Skip to main content
Log in

Modern genetic approaches to searching for targets for medicinal preparations

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In spite of a vast number of drug preparations used in medicine, advances in treating most socially important human diseases remain modest. Historically, many drugs were developed without clear understanding of the mechanisms of their action and were intended only for correcting symptoms of the disease. Identification of molecular targets in pharmacological screening new pharmaceuticals plays a key role not only in defining the strategy of the treatment, but also in understanding the general development of the disease. Sequencing of the genomes of various organisms, human in particular, and the development of new modern techniques of research have created the prerequisites for targeted screening for genes that are potentially interesting for development of new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Venter, J.C., Adams, M.D., Myers, E.W., et al., The Sequence of the Human Genome, Science, 2001, vol. 291, pp. 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  2. National Center for Biotechnology Information: Publicly Funded Programs in Sequencing the Mouse Genome, 2001, www.ncbi.nlm.nih.gov/Traces/traces.cgi

  3. Scriver, C.R., After the Genome-the Phenome, J. Inherited Metabolic Disease, 2004, vol. 27, pp. 305–317.

    Article  CAS  Google Scholar 

  4. Womack, J.E., Advances in Livestock Genomics: Opening the Barn Door, Genome Res., 2005, vol. 15, pp. 1699–16705.

    Article  PubMed  CAS  Google Scholar 

  5. Frantz, S. FDA Publishes Analysis of the Pipeline Problem, Nat. Rev. Drug Discov., 2004, vol. 3, p. 379.

    Article  PubMed  CAS  Google Scholar 

  6. Sams-Dodd, F., Target-Based Drug Discovery: Is Something Wrong?, Drug Discov. Today, 2005, vol. 10, pp. 139–147.

    Article  PubMed  CAS  Google Scholar 

  7. Butcher, S.P., Target Discovery and Validation in the Post-Genomic Era, Neurochem. Res., 2003, vol. 28, pp. 367–371.

    Article  PubMed  CAS  Google Scholar 

  8. Lindsay, M.A., Target Discovery, Nat. Rev. Drug Discov., 2003, vol. 2, pp. 831–838.

    Article  PubMed  CAS  Google Scholar 

  9. Hardy, L.W. and Peet, N.P., The Multiple Orthogonal Tools Approach to Define Molecular Causation in the Validation of Drug Gable Targets, Drug Discov. Today, 2004, vol. 9, pp. 117–126.

    Article  PubMed  CAS  Google Scholar 

  10. Bentley, A., MacLennan, B., Calvo, J., and Dearolf, C.R., Targeted Recovery of Mutations in Drosophila, Genetics, 2000, vol. 156, pp. 1169–1173.

    PubMed  CAS  Google Scholar 

  11. McCallum, C.M., Comai, L., Greene, E.A., and Henikoff, S., Targeted Screening for Induced Mutations, Nat. Biotechnol., 2000, vol. 18, pp. 455–457.

    Article  PubMed  CAS  Google Scholar 

  12. Laboratory Methods for the Detection of Mutations and Polymorphisms in DNA 352, Taylor, G.M., Ed., Boca Raton: CRC Press, 1997.

    Google Scholar 

  13. Kazazian, H.H., Mobile Elements: Drivers of Genome Evolution, Science, 2004, vol. 303, pp. 1626–1632.

    Article  PubMed  CAS  Google Scholar 

  14. Rorth, P., A Modular Misexpression Screen in Drosophila Detecting Tissue-Specific Phenotypes, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 12418–12422.

    Article  PubMed  CAS  Google Scholar 

  15. Adams, M.D. and Sekelsky, J.J., From Sequence to Phenotype: Reverse Genetics in Drosophila melanogaster, Nat. Rev. Genet., 2002, vol. 3, pp. 189–198.

    Article  PubMed  CAS  Google Scholar 

  16. Smith, D., Wohlgemuth, J., Calvi, B.R., et al., Hobo Enhancer Trapping Mutagenesis in Drosophila Reveals an Insertion Specificity Different from P Elements, Genetics, 1993, vol. 135, pp. 1063–1076.

    PubMed  CAS  Google Scholar 

  17. Horn, C. and Wimmer, E., A Versatile Vector Set for Animal Transgenesis, Dev. Genes Evol., 2000, vol. 210, pp. 630–637.

    Article  PubMed  CAS  Google Scholar 

  18. Klinakis, A.G., Zagoraiou, L., Vassilatis, D.K., and Savakis, C., Genome-Wide Insertional Mutagenesis in Human Cells by the Drosophila Mobile Element Minos, EMBO Rep., 2000, vol. 1, pp. 416–421.

    Article  PubMed  CAS  Google Scholar 

  19. Keng, V.W., Yae, K., Hayakawa, T., et al., Region-Specific Saturation Germline Mutagenesis in Mice Using the Sleeping Beauty Transposon System, Nat. Methods, 2005, vol. 2, pp. 763–769.

    Article  PubMed  CAS  Google Scholar 

  20. Takeda, J., Izsvak Z., Ivics Z. Inerstional Mutagenesis of the Mouse Germline with Sleeping Beauty Transposition, Methods Mol. Biol., 2008, vol. 435, pp. 109–125.

    Article  PubMed  CAS  Google Scholar 

  21. Dupuy, A.J. and Neal, G.C., Sleeping Beauty: A Novel Cancer Gene Discovery Tool, Hum. Mol. Genet., 2006, vol. 15, pp. 175–179.

    Article  CAS  Google Scholar 

  22. Collier, L.S., Carlson, C.M., Ravimohan, S., et al., Cancer Gene Discovery in Solid Tumours Using Transposon-Based Somatic Mutagenesis in the Mouse, Nature, 2005, vol. 436, pp. 272–276.

    Article  PubMed  CAS  Google Scholar 

  23. Ivics, Z., Hackett, P.B., Plasterk, R.H., and Izsvak, Z., Molecular Reconstruction of Sleeping Beauty, a Tc1-Like Transposon from Fish, and Its Transposition in Human Cells, Cell, 1997, vol. 91, pp. 501–510.

    Article  PubMed  CAS  Google Scholar 

  24. Dupuy, A.J., Fritz, S., and Largaespada, D.A., Transposition and Gene Disruption in the Male Germline of the Mouse, Genesis, 2001, vol. 30, pp. 82–88.

    Article  PubMed  CAS  Google Scholar 

  25. Fischer, S.E., Wienholds, E., and Plasterk, R.H., Regulated Transposition of a Fish Transposon in the Mouse Germ Line, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 6759–6764.

    Article  PubMed  CAS  Google Scholar 

  26. Horie, K., Kuroiwa, A., Ikawa, M., et al., Efficient Chromosomal Transposition of a Tc1/Mariner-Like Transposon Sleeping Beauty in Mice, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 9191–9196.

    Article  PubMed  CAS  Google Scholar 

  27. Dupuy, A.J., Akagi, K., Largaespada, D.A., et al., Mammalian Mutagenesis Using a Highly Mobile Somatic Sleeping Beauty Transposon System, Nature, 2005, vol. 436, pp. 221–226.

    Article  PubMed  CAS  Google Scholar 

  28. Callahan, R., MMTV-Induced Mutations in Mouse Mammary Tumors: Their Potential Relevance to Human Breast Cancer, Breast Cancer Res. Treat., 1996, vol. 39, pp. 33–44.

    Article  PubMed  CAS  Google Scholar 

  29. Mikkers, H. and Berns, A., Retroviral Insertional Mutagenesis: Tagging Cancer Pathways, Adv. Cancer Res., 2003, vol. 88, pp. 53–99.

    Article  PubMed  CAS  Google Scholar 

  30. Lazner, F., Gowen, M., Pavasovic, D., and Kola, I., Osteopetrosis and Osteoporosis: Two Sides of the Same Coin, Hum. Mol. Genet., 1999, vol. 8, pp. 1839–1846.

    Article  PubMed  CAS  Google Scholar 

  31. Yamashita, D.S. and Dodds, R.A., Cathepsin Kl: Cathepsin K and the Design of Inhibitors of Cathepsin K, Curr. Pharm. Des., 2000, vol. 6, pp. 1–24.

    Article  PubMed  CAS  Google Scholar 

  32. Saftig, P., Hunziker, E., Wehmeyer, O., et al., Impaired Osteoclastic Bone Resorption Leads to Osteopetrosis in Cathepsin-K-Deficient Mice, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 13453–13458.

    Article  PubMed  CAS  Google Scholar 

  33. Huszar, D., Lynch, C.A., Fairchild-Huntress, V., et al., Targeted Disruption of the Melanocortin-4 Receptor Results in Obesity in Mice, Cell, 1997, vol. 88, pp. 131–141.

    Article  PubMed  CAS  Google Scholar 

  34. Chen, A.S., Marsh, D.J., Trumbauer, M.E., et al., Inactivation of the Mouse Melanocortin-3 Receptor Results in Increased Fat Mass and Reduced Lean Body Mass, Nat. Genet., 2000, vol. 26, pp. 97–102.

    Article  PubMed  CAS  Google Scholar 

  35. Chen, A.S., Metzger, J.M., Trumbauer, M.E., et al., Role of the Melanocortin-4 Receptor in Metabolic Rate and Food Intake in Mice, Transgenic Res., 2000, vol. 9, pp. 145–154.

    Article  PubMed  CAS  Google Scholar 

  36. Abu-Elheiga, L., Matzuk, M.M., Abo-Hasema, K.A.H., and Wakil, S.J., Continuous Fatty Acid Oxidation and Reduced Fat Storage in Mice Lacking Acetyl-CoA Carboxylase 2, Science, 2001, vol. 291, pp. 2613–2616.

    Article  PubMed  CAS  Google Scholar 

  37. Evans, M.J., Smithies, O., and Capecchi, M.R., Generating Mice with Targeted Mutations, Nat. Med., 2001, vol. 7, pp. 8–12.

    Google Scholar 

  38. Beglopoulos, V. and Shen, J., Gene-Targeting Technologies for the Study of Neurological Disorders, NeuroMol. Med., 2004, vol. 6, pp. 13–30.

    Article  CAS  Google Scholar 

  39. Saura, C.A., Choi, S.-Y., Beglopoulos, V., et al., Loss of Presenilin Function Causes Impairments of Memory and Synaptic Plasticity Followed by Age-Dependent Neurodegeneration, Neuron, 2004, vol. 42, pp. 23–36.

    Article  PubMed  CAS  Google Scholar 

  40. Timmons, L. and Fire, A., Specific Interference by Ingested dsRNA, Nature, 1998, vol. 395, p. 854.

    Article  PubMed  CAS  Google Scholar 

  41. Fire, A., Xu, S., Montgomery, M.K., et al., Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis elegans, Nature, 1998, vol. 391, pp. 806–811.

    Article  PubMed  CAS  Google Scholar 

  42. Daneholt, B., RNA Interference, http://nobelprize.org/nobel_prizes/medicine/laureates/2006/adv.html

  43. Aza-Blanc, P., Cooper, C.L., Wagner, K., et al., Identification of Modulators of TRAIL Induced Apoptosis via RNAi-Based Phenotypic Screening, Mol. Cell, 2003, vol. 12, pp. 627–637.

    Article  PubMed  CAS  Google Scholar 

  44. Sarantseva, S.V., Bol’shakova, O.I., Timoshenko, S.I., et al., Studying the Pathogenesis of Alzheimer’s Disease in a Drosophila melanogaster Model: Human APP Overexpression in the Brain of Transgenic Flies Leads to Deficit of the Synaptic Protein Synaptotagmin, Russ. J. Genet., 2009, vol. 45, no. 1, pp. 119–126.

    Article  CAS  Google Scholar 

  45. Zambrowicz, B.P., Friedrich, G.A., Buxton, E.C., et al., Disruption and Sequence Identification of 2.000 Genes in Mouse Embryonic Stem Cells, Nature, 1998, vol. 392, pp. 608–611.

    Article  PubMed  CAS  Google Scholar 

  46. Govorkova, E.A., Webby, R.J., Humberd, J., et al., Immunization with Reverse-Genetics-Produced H5N1 Influenza Vaccine Protects Ferrets against Homologous and Heterologous Challenge, J. Infect. Dis., 2006, vol. 194, pp. 159–167.

    Article  PubMed  CAS  Google Scholar 

  47. Hardy, J. and Selkoe, D.J., The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. An Updated Summary of the Amyloid Hypothesis, Science, 2002, vol. 297, pp. 353–356.

    Article  PubMed  CAS  Google Scholar 

  48. Cao, W., Song, H.J., Gangi, T., et al., Identification of Novel Genes That Modify Phenotypes Induced by Alzheimer’s {;Beta};-Amyloid Overexpression in Drosophila, Genetics, 2008, vol. 178, pp. 1457–1467.

    Article  PubMed  CAS  Google Scholar 

  49. Finelli, A., Kelkar, A., Ho-Juhn Song, et al., A Model for Studying Alzheimer’s AB42-Induced Toxicity in Drosophila melanogaster, Mol. Cell. Neurosci., 2004, vol. 26, pp. 365–375.

    Article  PubMed  CAS  Google Scholar 

  50. Iwata, N., Tsubuki, S., Takaki, Y., et al., Metabolic Regulation of Brain Ah by Neprilysin, Science, 2001, vol. 292, pp. 1550–1552.

    Article  PubMed  CAS  Google Scholar 

  51. Marr, R.A., Rockenstein, E., Mukherjee, A., et al., Neprilysin Gene Transfer Reduces Human Amyloid Pathology in Transgenic Mice, J. Neurosci., 2001, vol. 23, pp. 1992–1996.

    Google Scholar 

  52. Iwata, N., Higuchi, M., and Saido, T., Metabolism of Amyloid-β Peptide and Alzheimer’s Disease, Pharmacol. Ther., 2005, vol. 108, pp. 129–148.

    Article  PubMed  CAS  Google Scholar 

  53. Spillantini, M.G., Bird, T.D., and Ghetti, B., Frontotemporal Dementia Andarkinsonism Linked to Chromosome 17: A New Group of Taupathies, Brain Pathol., 1998, vol. 8, pp. 387–402.

    Article  PubMed  CAS  Google Scholar 

  54. Illarioshkin, S.N., Konformatsionnye bolezni mozga (Conformational Brian Diseases), Moscow: Yanus-K, 2003.

    Google Scholar 

  55. Hong, M., Zhukareva, V., Vogelsberg-Ragaglia, Z., et al., Mutation-Specific Functional Impairments in Distinct Tau Isoforms of Hereditary FTDP-17, Science, 1998, vol. 282, pp. 1914–1917.

    Article  PubMed  CAS  Google Scholar 

  56. Wittmann, C.W., Wszolek, J.M., Shulman, P.M., et al., Tauopathy in Drosophila: Neurodegeneration without Neurofibrillary Tangles, Science, 2001, vol. 293, pp. 711–714.

    Article  PubMed  CAS  Google Scholar 

  57. Shulman, J.M. and Feany, M.B., Genetic Modifiers of Tauopathy in Drosophila, Genetics, 2003, vol. 165, pp. 1233–1242.

    PubMed  CAS  Google Scholar 

  58. Kraemer, B.C., Burgess, J.K., Chen, J.H., et al., Molecular Pathways that Influence Human Tau-Induced Pathology in Caenorhabditis elegans, Hum. Mol. Genet., 2006, vol. 15, pp. 1483–1496.

    Article  PubMed  CAS  Google Scholar 

  59. Kraemer, B.C., Zhang, B., Leverenz, J.B., et al., Neurodegeneration and Defective Neurotransmission in a Caenorhabditis elegans Model of Tauopathy, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 9980–9985.

    Article  PubMed  CAS  Google Scholar 

  60. Karsten, S.L., Sang, T.K., Gehman, L.T., et al., A Genomic Screen for Modifiers of Tauopathy Identifies Puromycin-Sensitive Aminopeptidase as an Inhibitor of Tau-Induced Neurodegeneration, Neuron, 2006, vol. 51, pp. 549–560.

    Article  PubMed  CAS  Google Scholar 

  61. Carpinelli, M.R., Hilton, D.J., Metcalf, D., et al., Suppressor Screen in Mpl−/− Mice: c-Myb Mutation Causes Supraphysiological Production of Platelets in the Absence of Thrombopoietin Signaling, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 6553–6558.

    Article  PubMed  CAS  Google Scholar 

  62. Emambokus, N., Vegiopoulos, A., Harman, B., et al., Progression through Key Stages of Haemopoiesis Is Dependent on Distinct Threshold Levels of c-Myb, EMBO J., 2003, vol. 22, pp. 4478–4488.

    Article  PubMed  CAS  Google Scholar 

  63. Haston C. and Hudson, T., Finding Genetic Modifiers of Cystic Fibrosis, N. Engl. J. Med., 2005, vol. 353, pp. 1509–1511.

    Article  PubMed  CAS  Google Scholar 

  64. Huntington’s Disease Collaborative Research Group: A Novel Gene Containing a Trinucleotide Repeat that Is Expanded and Unstable on Huntington’s Disease Chromosomes, Cell, 2003, vol. 72, pp. 971–983.

    Google Scholar 

  65. Gusella, J.F. and MacDonald, M.E., Molecular Genetics: Unmasking Polyglutamine Triggers in Neurodegenerative Disease, Nat. Rev. Neurosci., 2000, vol. 1, pp. 109–115.

    Article  PubMed  CAS  Google Scholar 

  66. Gusella, J.F. and Macdonald, M.E., Huntington’s Disease: Seeing the Pathogenic Process through a Genetic Lens, Trends Biochem. Sci., 2006, vol. 9, pp. 533–540.

    Article  CAS  Google Scholar 

  67. Zeng, W., Gillis, T., Hakky, M., et al., Genetic Analysis of the GRIK2 Modifier Effect in Huntington’s Disease, BMC Neurosci., 2006, vol. 62, pp. 1–9.

    Google Scholar 

  68. Rozmahel, R., Wilschanski, M., Matin, A., et al., Modulation of Disease Severity in Cystic Fibrosis Transmembrane Conductance Regulator Deficient Mice by a Secondary Genetic Factor, Nat. Genet., 1996, vol. 12, pp. 280–287.

    Article  PubMed  CAS  Google Scholar 

  69. Zielenski, J., Corey, M., Rozmahel, R., et al., Detection of a Cystic Fibrosis Modifier Locus for Meconium Ileus on Human Chromosome 19q13, Nature Gen., 1999, vol. 22, pp. 128–129.

    Article  CAS  Google Scholar 

  70. Sauer, S., Konthur, Z., and Lehrach, H., Genome Projects and the Functional-Genomic Era, Combinatorial Chem. High Throughput Screening, 2005, vol. 8, pp. 659–667.

    Article  CAS  Google Scholar 

  71. Sato, M., Taniguchi, T., and Tanaka, N., The Interferon System and Interferon Regulatory Factor Transcription Factors — Studies from Gene Knockout Mice, Cytokine Growth Factor Rev., 2001, vol. 12, pp. 133–142.

    Article  PubMed  CAS  Google Scholar 

  72. Venkatachalam, S. and Donehower, L.A., Murine Tumor Suppressor Models, Mutat. Res., 1998, vol. 400, pp. 391–407.

    PubMed  CAS  Google Scholar 

  73. Gingrich, N.A. and Hen, R., Dissecting the Role of the Serotonin System in Neuropsychiatric Disorders Using Knockout Mice, Psychopharmacology, 2001, vol. 155, pp. 1–10.

    Article  PubMed  CAS  Google Scholar 

  74. Ezzeldin, H.H. and Diasio, R.B., Genetic Testing in Cancer Therapeutics, Clin. Cancer Res., 2006, vol. 12, pp. 4137–4141.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sarantseva.

Additional information

Original Russian Text © S.V. Sarantseva, A.L. Schwarzman, 2009, published in Genetika, 2009, Vol. 45, No. 7, pp. 869–880.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarantseva, S.V., Schwarzman, A.L. Modern genetic approaches to searching for targets for medicinal preparations. Russ J Genet 45, 761–770 (2009). https://doi.org/10.1134/S1022795409070011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795409070011

Keywords

Navigation