Skip to main content

Advertisement

Log in

Genetics of postzygotic reproductive isolation in plants

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Postzygotic reproductive isolation, based on negative interactions of genes, is a key aspect of divergent speciation in plants and animals. The effect of the interaction manifests as a drastic reduction in fitness of hybrids of the first of subsequent generations, which is expressed as hybrid lethality, weakness or sterility. Both simple genetic control of genetic incompatibility, which includes interallelic negative complementation or epistatic interactions of a limited number of genes, and more complex control, based on epistatic interactions of many genes, have been described in plants. It is thought that genes for reproductive isolation are nonuniformly distributed over the genome and are related to differential adaptation. The mosaic organization of the genomes in this respect provides restoration of their structural and functional integrity upon interspecies hybridization in natural conditions. Many cultured and wild plant species, in contrast to animals, were found to be polymorphic at genes controlling interspecies incompatibility. This fact facilitates genetic analysis of incompatibility and broadens perspectives in studying the structure, functions, and molecular evolution of the genes controlling postzygotic reproductive isolation, in view of the possible leading role of these genes in adaptive speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mayr, E., Populations, Species, and Evolution, Cambridge, Massachusetts: Harvard Univ. Press, 1970.

    Google Scholar 

  2. Lewontin, R.C., The Genetic Basis of Evolutionary Change, New York: Columbia Univ. Press, 1974.

    Google Scholar 

  3. Grant, V., Plant Speciation, New York: Columbia Univ. Press, 1981.

    Google Scholar 

  4. Ayala, F., Population and Evolutionary Genetics: A Primer, Menlo Park: Benjamin Cummings, 1982.

    Google Scholar 

  5. Dobzhansky, T., Genetics and the Origin of Species, New York: Columbia Univ. Press, 1937.

    Google Scholar 

  6. Muller, H.J., Isolating Mechanisms, Evolution and Temperature, Biol. Symp., 1942, vol. 6, pp. 71–125.

    Google Scholar 

  7. Orr, H.A., Dobzhansky, Bateson and the Genetics of Speciation, Genetics, 1996, vol. 144, pp. 1331–1335.

    PubMed  CAS  Google Scholar 

  8. Orr, H.A. and Presgraves, D.C., Speciation by Postzygotic Isolation: Forces, Genes and Molecules, BioEssays, 2000, vol. 22, pp. 1085–1094.

    Article  PubMed  CAS  Google Scholar 

  9. Sturtevant, A.H., Genetic Studies on Drosophila simulans: I. Introduction. Hybrids with Drosophila melanogaster, Genetics, 1920, vol. 5, pp. 488–500.

    PubMed  CAS  Google Scholar 

  10. Hutter, P., Roote, J., and Ashburner, M., A Genetic Basis for the Inviability of Hybrids between Sibling of Drosophila, Genetics, 1990, vol. 124, pp. 909–920.

    PubMed  CAS  Google Scholar 

  11. Watanabe, T.K., A Gene that Rescues the Lethal Hybrids between Drosophila melanogaster and D. simulans, Jpn. J. Genet., 1979, vol. 54, pp. 325–331.

    Article  Google Scholar 

  12. Sawamura, K. and Yamamoto, M.T., Hybrid Lethal Systems in the Drosophila melanogaster Species Complex, Genetics, 1993, vol. 88, pp. 175–185.

    CAS  Google Scholar 

  13. Wu, C.-I. and Palopoli, M.F., Genetics of Postmating Reproductive Isolation in Animals, Ann. Rev. Genet., 1994, vol. 27, pp. 283–308.

    Article  Google Scholar 

  14. Perez, D.E. and Wu, C.-I., Further Characterization of the Odysseus Locus of Hybrid Sterility in Drosophila: One Gene Is Not Enough, Genetics, 1995, vol. 140, pp. 201–206.

    PubMed  CAS  Google Scholar 

  15. Presgraves, D.C., A Fine-Scale Genetic Analysis of Hybrid Incompatibilities in Drosophila, Genetics, 2003, vol. 163, no. 3, pp. 955–972.

    PubMed  CAS  Google Scholar 

  16. Reiseberg, L.H. and Burke, J.M., A Genic View of Species Integration, J. Evol. Biol., 2001, vol. 14, pp. 883–886.

    Article  Google Scholar 

  17. Karpechenko, G.D., The Theory of Remote Hybridization, Teoreticheskie osnovy selektsii rastenii (Theoretical Bases of Plant Breeding), Vavilov, N.I, Ed., Leningrad, 1935, vol. 1, pp. 397–434.

  18. Demerec, M., Inheretance of Pale Green Seedlings in Maize, Genetics, 1925, vol. 10, pp. 318–344.

    PubMed  CAS  Google Scholar 

  19. Mangelsdorf, P.C., The Inheritance of Dormancy and Germination in Maize, Genetics, 1930, vol. 15, pp. 462–493.

    PubMed  CAS  Google Scholar 

  20. Wiebe, G.A., Complementary Factors in Barley Giving a Lethal Progeny, J. Heredity, 1934, vol. 25, pp. 273–274.

    Google Scholar 

  21. Hollingshead, L., A Lethal Factor in Crepis Effective Only in an Interspecific Hybrid, Genetics, 1930, vol. 15, pp. 114–140.

    PubMed  CAS  Google Scholar 

  22. Lehmann, E., Zur Genetik der Entwicklung in der Gattung Epilobium: II. Mitteilung, Jahrbuch Wiss. Bot., 1939, vol. 88, pp. 284–343.

    Google Scholar 

  23. Sears, E.R., Inviability of Intergeneric Hybrids Involving Triticum monococcum and T. aegilopoides, Genetics, 1944, vol. 29, pp. 113–127.

    PubMed  CAS  Google Scholar 

  24. Melchers, G., Genetik und Evolution, Zeitschrift I.A.V., 1939, vol. 76, pp. 229–259.

    Article  Google Scholar 

  25. Sax, K., Sterility in Wheat Hybrids: I. Sterility Relationships and Endosperm Development, Genetics, 1921, vol. 6, pp. 399–416.

    PubMed  CAS  Google Scholar 

  26. Voylokov, A.V. and Tikhenko, N.D., Identification and Localization of Rye Polymorphic Genes Specifically Expressed in Triticale, in Proc. 4th Triticale Symp., Red Deer: Int. Triticale Assoc., 1998, vol. 1, pp. 290–296.

    Google Scholar 

  27. Voylokov, A.V. and Tikhenko, N.D., Triticale as a Model for Study of Genome Interaction and Genome Evolution in Allopolyploid Plants, Proc. 5th Triticale Symp., Radzikow: Int. Triticale Assoc., 2002, vol. 1, pp. 63–69.

    Google Scholar 

  28. Gerstel, D.U., A New Lethal Combination in Interspecific Cotton Hybrids, Genetics, 1954, vol. 39, pp. 628–639.

    PubMed  CAS  Google Scholar 

  29. Harland, S.C., St. Croix Report Agric. Expt. Sta., 1915, pp. 1913–1914.

  30. Harland, S.C., The Genetics of Cotton, London: Jonathan Cape, 1939.

    Google Scholar 

  31. Sawant, A.C., Semilethal Complementary Factors in a Tomato Species Hybrid, Evolution, 1956, vol. 10, pp. 93–96.

    Article  Google Scholar 

  32. Stephens, S.C., The Genetics of “Corky”: I. The New World Alleles and Possible Role as an Interspecific Isolating Mechanism, J. Genet., 1946, vol. 47, pp. 150–161.

    Article  Google Scholar 

  33. Stephens, S.C., The Genetics of “Corky”: II. Further Studies in Its Genetic Basis in Relation to the General Problem of Interspecific Isolating Mechanisms, J. Genet., 1950, vol. 50, pp. 9–20.

    Article  Google Scholar 

  34. Hutchinson, J.B., The Genetics of Cotton: VII. “Crumpled” a New Dominant in Asiatic Cottons Produced by Complementary Factors, J. Genet., 1932, vol. 25, pp. 181–192.

    Article  Google Scholar 

  35. Lee, J.A., Genetics of D3 Complementary Lethality in Gossypium hitsutum and G. barbadense, J. Hered., 1981, vol. 72, pp. 299–300.

    Google Scholar 

  36. Stelly, D.M., Localization of the Le 2 Locus of Cotton (Gossypium hitsutum), J. Hered., 1990, vol. 81, pp. 193–197.

    Google Scholar 

  37. Samora, P.J., Stelly, D.M., and Kohel, R.J., Localization and Mapping of the Le 1 and Gl 2 of Cotton (Gossypium hirsutum L.), J. Hered., 1994, vol. 85, pp. 152–157.

    CAS  Google Scholar 

  38. Vickery, Jr.R.K., Case Studies in the Evolution of Species Complexes in Mimulus, Evol. Biol., 1978, vol. 11, pp. 405–507.

    Google Scholar 

  39. Macnair, M.R. and Christie, P., Reproductive Isolation as a Pleiotropic Effect of Cooper Tolerance in Mimulus guttatus, J. Hered., 1983, vol. 50, pp. 295–302.

    Article  CAS  Google Scholar 

  40. Christie, P. and Macnair, M.R., Complementary Lethal Factors in Two North American Populations of the Yellow Monkey Flower, J. Hered., 1984, vol. 75, pp. 510–511.

    Google Scholar 

  41. Christie, P. and Macnair, M.R., The Distribution of Postmating Reproductive Isolating Genes in Populations of the Yellow Monkey Flower, Mimulus guttatus, Evolution, 1987, vol. 41, pp. 571–578.

    Article  Google Scholar 

  42. Sweigart, A.L. and Fishman, L., A Simple Incompatibility Caused Hybrid Male Sterility in Mimulus, Genetics, 2006, vol. 172, pp. 2465–2479.

    Article  PubMed  CAS  Google Scholar 

  43. Sweigart, A.L. and Mason, A.R., Natural Variation for a Hybrid Incompatibility between Two Species of Mimulus, Evolution, 2007, vol. 61, pp. 141–151.

    Article  PubMed  Google Scholar 

  44. Sano, Y. and Kita, F., Reproductive Barriers Distributed in Melilotus Species and Their Genetic Bases, Can. J. Genet. Cytol., 1978, vol. 20, pp. 275–289.

    Google Scholar 

  45. Oka, H.I., Variations in Various Characters and Character Combinations among Rice Varieties, Jpn. J. Breed., 1953, vol. 3, pp. 35–43.

    Google Scholar 

  46. Oka, H.I., Phylogenetic Differentiation of Cultivated Rice: XV. Complementary Lethal Genes in Rice, Jpn. J. Genet., 1957, vol. 32, pp. 83–87.

    Article  Google Scholar 

  47. Chu, Y.E. and Oka, H.I., The Distribution and Effect of Genes Causing F1 Weakness in Oryza breviligulata and O. glaberrima, Genetics, 1972, vol. 70, pp. 163–173.

    PubMed  CAS  Google Scholar 

  48. Amemiya, A. and Akemine, H., Biochemical Genetic Studies on the Root Growth Inhibiting Complementary Lethals in Rice Plant, Bull. Nat. Inst. Agric. Sci. D., 1963, vol. 10, pp. 139–226.

    Google Scholar 

  49. Sato, Y.I. and Hayashi, K., Distribution of the Complementary Genes Causing F1 Weakness in the Common Rice and Its Wild Relatives: 1. Le-2-a Gene in Asian Native Cultivars, Jpn. J. Genet., 1983, vol. 58, pp. 411–418.

    Article  Google Scholar 

  50. Sato, Y.I. and Morishima, H., Studies on the Distribution of the Complementary Genes Causing F1 Weakness in the Common Rice and Its Wild Relatives: 2. Distribution of Two Complementary Genes, Hwc1 and Hwc2 Gene in Native Cultivars and Its Wild Relatives of Tropical Asia, Euphytica, 1987, vol. 36, pp. 425–431.

    Article  Google Scholar 

  51. Ichitani, K., Fukuta, Y., Taura, S., and Sato, M., Chromosomal Location of Hwc2, One of the Complementary Hybrid Weakness Genes, in Rice, Plant Breed., 2001, vol. 120, pp. 523–525.

    Article  CAS  Google Scholar 

  52. Ichitani, K., Namigoshi, K., Sato, M., et al., Fine Mapping and Allelic Dosage Effect of Hwc1, a Complementary Hybrid Weakness Gene in Rice, Theor. Appl. Genet., 2007, vol. 114, pp. 1407–1415.

    Article  PubMed  CAS  Google Scholar 

  53. Okuno, K., Complementary Recessive Genes Controlling Hybrid Breakdown Found in a Varietal Cross of Rice, Rice Genet. Newslett., 1985, vol. 2, pp. 52–54.

    Google Scholar 

  54. Okuno, K. and Fukuoka, S., Distribution and RFLP Mapping of Complementary Genes Causing Hybrid Breakdown in Asian Cultivated Rice, Oryza sativa L., Jpn. Agr. Res. Quart., 1999, vol. 33, no. 1, pp. 1–9.

    CAS  Google Scholar 

  55. Fukuoka, S., Namai, H., and Okuno, K., RFLP Mapping of the Genes Controlling Hybrid Breakdown in Rice (Oryza sativa L.), Theor. Appl. Genet., 1998, vol. 97, pp. 446–449.

    Article  CAS  Google Scholar 

  56. Fukuoka, S., Newingham, M.C.V., Ishtiag, M., et al., Identification and Mapping of Two New Loci for Hybrid Breakdown in Cultivated Rice, Rice Genet. Newslett., 2005, vol. 22, pp. 29–31.

    Google Scholar 

  57. Kubo, T. and Yoshimura, A., Genetics Basis of Hybrid Breakdown in a Japonica/Indica Cross of Rice, Oryza sativa L., Theor. Appl. Genet., 2002, vol. 105, pp. 906–911.

    Article  PubMed  CAS  Google Scholar 

  58. Sano, Y., The Genetic Nature of Gamete Eliminator in Rice, Genetics, 1990, vol. 125, pp. 183–191.

    PubMed  CAS  Google Scholar 

  59. Matsubara, K., Ando, T., Mizubayashi, T., et al., Identification and Linkage Mapping of Complementary Recessive Genes Causing Hybrid Breakdown in an Intraspecific Rice Cross, Theor. Appl. Genet., 2007, vol. 115, pp. 179–186.

    Article  PubMed  CAS  Google Scholar 

  60. Yamamoto, E., Takashi, T., Morinaka, Y., et al., Interaction of Two Recessive Genes, Hbd2 and Hbd3, Induced Hybrid Breakdown in Rice, Theor. Appl. Genet., 2007, vol. 115, pp. 187–194.

    Article  PubMed  CAS  Google Scholar 

  61. Morrison, J., Dwarfs, Semi-Lethals and Lethals in Wheat, Euphytica, 1957, vol. 6, pp. 213–223.

    Article  Google Scholar 

  62. Kostyuchenko, I.A., The Premature Perishing of the Hybrids in Wheat Crosses, Tr. Prikladnoy Botanike Genet. Selektsii, Ser. A, 1936, no. 19, pp. 127–137.

  63. Caldwell, R.M. and Compton, L.E., Complementary Lethal Genes in Wheat Causing Progressive Lethal Necrosis of Seedlings, J. Hered., 1943, vol. 34, pp. 67–70.

    Google Scholar 

  64. Hermsen, J.G.Th., Hybrid Necrosis in Wheat, Versl. Landbk. Onderz., 1962, no. 68,5, p. 129.

  65. Hermsen, J.G.Th., The Genetic Basis of Hybrid Necrosis in Wheat, Genetics, 1963, vol. 33, pp. 245–287.

    Google Scholar 

  66. Tsunewaki, K., Monosomic and Conventional Gene Analysis in Common Wheat: III. Lethality, Jpn. J. Genet., 1960, vol. 35, pp. 71–75.

    Article  Google Scholar 

  67. Hermsen, J.G.Th., Hybrid Necrosis and Red Hybrid Chlorosis, Proc. 2th Int. Wheat Genet. Symp., Mackey, J., Ed., Lund, 1963, Hereditas Suppl., 1966, vol. 2, pp. 439–452.

  68. Zeven, A.C., Determination of the Chromosome and Its Arm Carrying the Ne1-Locus of Triticum aestivium L., Chinese Spring and the Ne1-Expressivity, Wheat Inf. Service, 1972, vol. 33–34, pp. 4–6.

    Google Scholar 

  69. Nishikawa, K., Mori, T., Takami, N., and Furuta, Y., Mapping of Progressive Necrosis Gene Ne1 and Ne2 of Common Wheat by the Telocentric Method, Jpn. J. Breed., 1974, vol. 24, pp. 277–281.

    Google Scholar 

  70. Pukhalskiy, V.A., Genetics of Necrosis Triangular, Dokl. Timiryazev S.-Kh. Akad., 1976, no. 224.

  71. Pukhalskiy, V.A., Analysis of Genetic Systems Inducing Lethality in the Genus Triticum with Regard to Genetic Theory of Selection, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow, 1981, p. 53.

  72. Chu, C.-G., Faris, J.D., and Friesen, T.L., Molecular Mapping of Hybrid Necrosis Genes Ne1 and Ne2 in Hexaploid Wheat Using Microsatellite Markers, Theor. Appl. Genet., 2006, vol. 112, pp. 1474–1381.

    Google Scholar 

  73. Pukhalskiy, V.A., Martynov, S.P., and Dobrotvorskaya, T.V., Geny gibridnogo nekroza pshenits (teoriya voprosa i katalog nositelei letal’nykh genov) (The Genes of Wheat Hybrid Necrosis (Theory of the Problem and the Index of Lethal Gene Carriers), Moscow: Mosk. S-kh. Akad., 2002.

    Google Scholar 

  74. Tsunewaki, K. and Nakay, Y., Considerations on the Origin and Speciation of Four Groups of Wheat from the Distribution of Necrosis and Chlorosis Genes, in Proc. 4th Int. Wheat Genet. Symp., Columbia, 1973, pp. 123–129.

  75. Scoles, G.J., A Gene for Hybrid Necrosis in an Inbred Line of Rye (Secale cereale L.), Euphytica, 1985, vol. 34, pp. 207–212.

    Article  Google Scholar 

  76. Ren, Z.L. and Lelley, T., Genetics of Hybrid Necrosis in Rye, Plant Breed., 1988, vol. 100, pp. 173–180.

    Article  Google Scholar 

  77. Devos, K.M., Atkinson, M.D., Chinoy, C.N., et al., Chromosomal Rearrangements in the Rye Genome Relative to That of Wheat, Theor. Appl. Genet., 1993, vol. 85, pp. 673–680.

    Article  CAS  Google Scholar 

  78. Hermsen, J.G.Th., Attempts to Localize the Gene Ch1 for Hybrid Chlorosis in Wheat, Euphytica, 1972, vol. 21, pp. 204–208.

    Article  Google Scholar 

  79. Tsunewaki, K. and Kihara, H., F1 Monosomic Analysis of Triticum macha, Wheat Inf. Service, 1961, vol. 12, nos. 1–2, p. 1505.

    Google Scholar 

  80. Tomar, S.M.S. and Singh, Bh., Hybrid Chlorosis in Wheat x Rye Crosses, Euphytica, 1998, vol. 99, pp. 1–4.

    Article  Google Scholar 

  81. Kawahara, T., Genetic Analysis of Cs Chlorosis in Tetraploid Wheat, Jpn. J. Genet, 1993, vol. 68, pp. 147–153.

    Article  CAS  Google Scholar 

  82. McMillan, J.R.A., Investigations on the Occurrence and Inheritance of the Grass Clump Character in Crosses between Varieties of T. vulgare (Vill.), Council Sci. Ind. Res. Bull., 1937, vol. 104, p. 68.

    Google Scholar 

  83. Hermsen, J.G.Th., Hybrid Dwarfness in Wheat, Euphytica, 1967, vol. 16, pp. 134–162.

    Article  Google Scholar 

  84. Law, C.N., The Genetics of Hybrid Dwarfing in Wheat, Zeitschrift Pflanzenzuchtg., 1980, vol. 85, pp. 28–39.

    Google Scholar 

  85. Moore, K., The Genetical Control of the Grass Dwarf Phenotype in Triticum aestivum L., Euphytica, 1966, vol. 18, pp. 190–203.

    Google Scholar 

  86. Hurd, E.A. and McGinnis, R.C., Note on the Location of Genes for Dwarfing in Redman Wheat, Can. J. Pl. Sci., 1958, vol. 38, no. 4, p. 506.

    Article  Google Scholar 

  87. Hermsen, J.G.Th., Hybrid Necrosis as a Problem for the Breeder, Euphytica, 1963, vol. 12, pp. 1–16.

    Google Scholar 

  88. Silbaugh, R.A. and Metzger, R.J., Inheretance of Hybrid Dwarfness in Hexaploid Wheats, Agron. Abstr., 1970, p. 20.

  89. Law, C.N., Genetic Analysis of Chromosome 2D of Wheat: I. The Location of Genes Affecting Height, Day-Length Insensitivity, Hybdid Dwarfism and Yellow-Rust Resistance, Zeitschrift Pflanzenzuchtg., 1986, vol. 96, pp. 331–345.

    Google Scholar 

  90. Nishikawa, K., Hybrid Lethality in Crosses between Emmer Wheat and Aegilops squarrosa: II. Synthesized 6x Wheats Employed as Test Varietes, Jpn. J. Genet., 1962, vol. 37, pp. 227–236.

    Article  Google Scholar 

  91. Tanaka, M., Phylogenetic Relationship and Species Differentiation in Genus Triticum with Special Reference to the Genotypes for Dwarfness, Memoirs Coll. Agric., Kyoto Univ. Genet. Ser., 1965, no. 87, pp. 1–30.

  92. May, C.E. and Appels, R., Rye Chromosome Translocations in Hexaploid Wheat: A Reevaluation of the Loss of Heterochromatin from Rye Chromosomes, Theor. Appl. Genet., 1980, vol. 56, pp. 12–23.

    Article  Google Scholar 

  93. May, C.E. and Appels, R., Seedling Lethality in Wheat: A Novel Phenotype Associated with a 2RS/2BL Translocation Chromosome, Theor. Appl. Genet., 1984, vol. 68, pp. 163–168.

    Article  Google Scholar 

  94. Knott, D.R., The Mode of Inheritance of a Type of Dwarfism in Common Wheat, Genome, 1989, vol. 32, pp. 932–933.

    Google Scholar 

  95. Tomar, S.M.S. and Vinod, Singh Bh., Genetic Analysis of Apical Lethality in Triticum aestivum L., Euphytica, 2007, vol. 156, pp. 425–431.

    Article  Google Scholar 

  96. Sharma, H.C., How Wide Can a Wide Cross Be?, Euphytica, 1995, vol. 82, pp. 43–64.

    Article  Google Scholar 

  97. Bomblies, K., Hybrid Necrosis: Autoimmunity as a Potential Gene-Flow Barrier in Plant Species, Nat. Rev. Genet., 2007, vol. 8, pp. 382–393.

    Article  PubMed  CAS  Google Scholar 

  98. Erickson, D.L., Fenster, C.B., Stenqien, H.K., and Price, D., Quantitative Trait Locus Analysis and the Study of Evolutionary Process, Mol. Ecol., 2004, vol. 13, pp. 2505–2522.

    Article  PubMed  CAS  Google Scholar 

  99. Slate, J., Quantitative Trait Locus Mapping in Natural Populations: Progress, Caveats and Future Directions, Mol. Ecol., 2005, vol. 14, pp. 363–379.

    Article  PubMed  CAS  Google Scholar 

  100. Harushima, Y., Nakagahra, M., Yano, M., et al., A Genome-Wide Survey of Reproductive Barriers in an Intraspecific Hybrid, Genetics, 2001, vol. 159, pp. 883–892.

    PubMed  CAS  Google Scholar 

  101. Xu, Y., Xiao, J., Nuang, N., and McCouch, S.R., Chromosomal Regions Associated with Segregation Distortion of Molecular Markers in F2, Backcross, Doubled Haploid, and Recombinant Inbred Populations in Rice (Oryza sativa L.), Mol. Gen. Genet., 1997, vol. 253, pp. 535–545.

    Article  PubMed  CAS  Google Scholar 

  102. Hall, M.C., Transmission Ratio Distortion in Intraspecific Hybrids of Mimulus guttatus: Implications for Genome Divergence, Genetics, 2005, vol. 170, pp. 373–386.

    Google Scholar 

  103. Harushima, Y., Nakagahra, M., Yano, M., et al., Diverse Variation of Reproductive Barriers in Three Intraspecific Rice Crosses, Genetics, 2002, vol. 160, pp. 313–322.

    PubMed  Google Scholar 

  104. Bouck, A., Peeler, R., and Arnold, M.L., Genetic Mapping of Species Boundaries in Louisiana Irises Using IRRE Retrotransposons Display Markers, Genetics, 2005, vol. 171, pp. 1289–1303.

    Article  PubMed  CAS  Google Scholar 

  105. Nakazato, T., Jung, M.-K., Houswirth, E.A., et al., A Genomewide Study of Reproductive Barriers between Allopatric Populations of a Homosporous Fern, Cepatopteris richardii, Genetics, 2007, vol. 177, pp. 1141–1150.

    Article  PubMed  Google Scholar 

  106. Li, Z., Pinson, S.R.M., Paterson, A.H., et al., Genetics of Hybrid Sterility and Hybrid Breakdown in an Intersubspecific Rice (Oryza sativa L.) Population, Genetics, 1997, vol. 145, pp. 1139–1148.

    PubMed  CAS  Google Scholar 

  107. Lai, Z., Nakasato, T., Salmaso, M., et al., Extensive Chromosomal Repatterning and the Evolution of Sterility Barriers in Hybrid Sunflower Species, Genetics, 2005, vol. 171, pp. 291–303.

    Article  PubMed  CAS  Google Scholar 

  108. Moyle, L.C. and Graham, E.B., Genetics of Hybrid Incompatibility between Lycopersicon esculentum and L. hirsutum, Genetics, 2005, vol. 169, pp. 355–373.

    Article  PubMed  CAS  Google Scholar 

  109. Moyle, L.C., Comparative Genetics of Potential Prezygotic and Postzygotic Isolating Barriers in a Lycopersicon Species Cross, J. Hered., 2007, vol. 98, no. 2, pp. 123–135.

    Article  PubMed  CAS  Google Scholar 

  110. Rieseberg, L.H. and Carney, S.E., Plant Hybridization, New Phytol., 1998, vol. 140, pp. 599–624.

    Article  Google Scholar 

  111. Rieseberg, L.H., Baird, S.J.E., and Gardner, K.A., Hybridization, Introgression, and Linkage Evolution, Plant. Mol. Biol., 2000, vol. 42, pp. 205–224.

    Article  PubMed  CAS  Google Scholar 

  112. Baack, E.J. and Rieseberg, L.H., A Genomic View of Introgression and Hybrid Speciation, Curr. Opin. Genet. Devel., 2007, vol. 17, no. 6, pp. 513–518.

    Article  CAS  Google Scholar 

  113. Rieseberg, L.H., Church, S.A., and Morjan, C.L., Integration of Populations and Differentiation of Species, New Phytol., 2003, vol. 161, pp. 59–69.

    Article  CAS  Google Scholar 

  114. Wu, C.-I., The Genetic View of the Process of Speciation, J. Evol. Biol., 2001, vol. 14, pp. 851–865.

    Article  Google Scholar 

  115. Mayr, E., Animal Species and Evolution, Cambridge: The Belcamp Press, 1963.

    Google Scholar 

  116. Mayr, E., Wu’s Genic View of Speciation, J. Evol. Biol., 2001, vol. 14, pp. 866–887.

    Article  Google Scholar 

  117. Orr, H.A., Masly, J.P., and Presgraves, D.C., Speciation Genes, Curr. Opin. Genet. Devel., 2004, vol. 14, pp. 675–679.

    Article  CAS  Google Scholar 

  118. Lemmon, A.R. and Kirkpatrick, M., Reinforcement and the Genetics of Hybrid Incompatibilites, Genetics, 2006, vol. 173, pp. 1145–1155.

    Article  PubMed  CAS  Google Scholar 

  119. Pukhalskiy, V.A., Martynov, S.P., and Dobrotvorskaya, T.V., Analysis of Geographical and Breeding Related Distribution of Hybrid Necrosis, Euphytica, 2000, vol. 114, pp. 233–240.

    Article  CAS  Google Scholar 

  120. Soltis, D.E., Soltis, P.S., and Tate, J.A., Advances in the Study of Polyploidy Since Plant Speciation, New Phytol., 2003, vol. 161, pp. 173–191.

    Article  CAS  Google Scholar 

  121. Burke, J.M. and Arnold, M.L., Genetics and the Fitness of Hybrids, Ann. Rev. Genet., 2001, vol. 35, pp. 31–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voilokov.

Additional information

Original Russian Text © A.V. Voilokov, N.D. Tikhenko, 2009, published in Genetika, 2009, vol. 45, no. 6, pp. 729–744.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voilokov, A.V., Tikhenko, N.D. Genetics of postzygotic reproductive isolation in plants. Russ J Genet 45, 637–650 (2009). https://doi.org/10.1134/S1022795409060027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795409060027

Keywords