Skip to main content
Log in

Genetic control of metabolism of mutagenic purine base analogs 6-hydroxylaminopurine and 2-amino-6-hydroxylaminopurine in yeast Saccharomyces cerevisiae

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

We studied the effect of inactivation of genes, which control biosynthesis of inosine monophosphate (IMP) de novo and purine salvage and interconversion pathways, on sensitivity of yeast Saccharomyces cerevisiae to the mutagenic and toxic action of 6-hydroxylaminopurine (HAP) and 2-amino-6-hydroxylaminopurine (AHA). It was shown that the manifestation of HAP and AHA mutagenic properties depends on the action of enzyme adenine phosphoribosyltransferase encoded in yeast by APT1 gene. A blockade of any step of IMP biosynthesis, with the exception of the block mediated by inactivation of genes ADE16 and ADE17 leading to the accumulation of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), was shown to enhance yeast cell sensitivity to the HAP mutagenic effect; however, it does not affect the sensitivity to AHA. A block of conversion of IMP into adenosine monophosphate (AMP) causes hypersensitivity of yeast cells to the mutagenic action of HAP and to the toxic effect of HAP, AHA, and hypoxanthine. It is possible that this enhancement of sensitivity to HAP and AHA is due to changes in the pool of purines. We conclude that genes ADE12, ADE13, AAH1, and HAM1 controlling processes of purine salvage and interconversion in yeast, make the greatest contribution to the protection against the toxic and mutagenic action of the examined analogs. Possible mechanisms of HAP detoxication in bacteria, yeast, and humans are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khromov-Borisov, N.N., Naming the Mutagenic Nucleic Acid Base Analogs: The Galatea Syndrome, Mutat. Res., 1997, vol. 379, no. 1, pp. 95–103.

    PubMed  CAS  Google Scholar 

  2. Pavlov, Y.I., Noskov, V.N., Lange, E.K., et al., The Genetic Activity of N6-Hydroxyadenine and 2-Amino-N6-Hydroxyadenine in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae, Mutat. Res., 1991, vol. 253, pp. 33–46.

    PubMed  CAS  Google Scholar 

  3. Chaube, S. and Murphy, M.L., Teratogenic Effects of 6-Hydroxylaminopurine in the Rat—Protection by Inosine, Biochem. Pharmacol., 1969, vol. 18, no. 5, pp. 1147–1156.

    Article  PubMed  CAS  Google Scholar 

  4. Barrett, J.C., Induction of Gene Mutation in and Cell Transformation of Mammalian Cells by Modified Purines: 2-Aminopurine and 6-N-Hydroxylaminopurine, Proc. Natl. Acad. Sci. USA, 1981, vol. 78, no. 9, pp. 5685–5689.

    Article  PubMed  CAS  Google Scholar 

  5. Biesele, J.J., Some Morphological Effects of Alkylating Agents, Exp. Cell Res., 1963, suppl. 9, pp. 525–534.

  6. Lieberman, I., Enzymatic Synthesis of Adenosine-5′-Phosphate from Inosine-5′-Phosphate, J. Biol. Chem., 1956, vol. 223, pp. 327–339.

    PubMed  CAS  Google Scholar 

  7. Clement, B. and Kunze, T., Hepatic Microsomal N-Hydroxylation of Adenine to 6-N-Hydroxylaminopurine, Biochem. Pharmacol., 1990, vol. 39, pp. 925–933.

    Article  PubMed  CAS  Google Scholar 

  8. Simandan, T., Sun, J., and Dix, T.A., Oxydation of DNA Bases, Deoxyribonucleosides and Homopolymers by Peroxyl Radicals, Biochem. J., 1998, vol. 335, pp. 233–240.

    PubMed  CAS  Google Scholar 

  9. Sekiguchi, M. and Tsuzuki, T., Oxidative Nucleotide Damage: Consequences and Prevention, Oncogene, 2002, vol. 16, no. 21(58), pp. 8895–8904.

    Article  Google Scholar 

  10. Stepchenkova, E.I., Kozmin, S.G., Alenin, V.V., and Pavlov, Y.I., Genome-Wide Screening for Genes Whose Deletions Confer Sensitivity to Mutagenic Purine Base Analogs in Yeast, BMC Genet., 2005, vol. 6, no. 31, pp. 1–6.

    Google Scholar 

  11. Tibbetts, A.S. and Appling, D.R., Characterization of Two 5-Aminoimidazole-4-Carboxamide Ribonucleotide Transformylase/Inosine Monophosphate Cyclohydrolase Isozymes from Saccharomyces cerevisiae, J. Biol. Chem., 2000, vol. 275, no. 27, pp. 20920–20927.

    Article  PubMed  CAS  Google Scholar 

  12. Rebora, K., Laloo, B., and Daignan-Fornier, B., Revisiting Purine-Histidine Cross-Pathway Regulation in Saccharomyces cerevisiae: A Central Role for a Small Molecule, Genetics, 2005, vol. 170, no. 1, pp. 61–70.

    Article  PubMed  CAS  Google Scholar 

  13. Guetsova, M.L., Lecoq, K., and Daignan-Fornier, B., The Isolation and Characterization of Saccharomyces cerevisiae Mutants That Constitutively Express Purine Biosynthetic Genes, Genetics, 1997, vol. 147, pp. 383–397.

    PubMed  CAS  Google Scholar 

  14. Winzeler, E.A., Shoemaker, D.O., Astromoff, A., et al., Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis, Science, 1999, vol. 258, pp. 901–906.

    Article  Google Scholar 

  15. Glotov, N.V., Zhivotovsky, L.A., Khovanov, N.V., and Khromov-Borisov, N.N., Biometriya (Biometry), Leningrad: Leningrad Gos. Univ., 1982.

    Google Scholar 

  16. Leclerc, I., Viollet, B., da Silva Xavier, G., et al., Role of AMP-Activated Protein Kinase in the Regulation of Gene Transcription, Biochem. Soc. Trans., 2002, vol. 30, no. 2, pp. 307–311.

    Article  PubMed  CAS  Google Scholar 

  17. Chabes, A., Georgieva, B., Domkin, V., et al., Survival of DNA Damage in Yeast Directly Depends on Increased dNTP Levels Allowed by Relaxed Feedback Inhibition of Ribonucleotide Reductase, Cell, 2003, vol. 112, no. 3, pp. 391–401.

    Article  PubMed  CAS  Google Scholar 

  18. Zekhnov, A.M., Domkin, V.D., Dembereliin, O., et al., Mutation of ade13-1 of the Yeasts Saccharomyces cerevisiae Leads to the Absence of Growth on a Complete Medium with Glucose and Epistatically Interacts with Mutations in Other Genes of Purine Biosyntheses, Russ. J. Genet., 1995, vol. 31, no. 1, pp. 15–23.

    CAS  Google Scholar 

  19. Burgis, N.E. and Cunningham, R.P., Substrate Specificity of RdgB Protein, a Deoxyribonucleoside Triphosphate Pyrophosphohydrolase, J. Biol. Chem., 2007, vol. 282, no. 6, pp. 3531–3538.

    Article  PubMed  CAS  Google Scholar 

  20. Weber, E., Rodriguez, C., Chevallier, M.R., and Jund, R., The Purine Cytosine Permease of Saccharomyces cerevisiae: Primary Structure and Deduced Protein Sequence of the FCY2 Gene Product, Mol. Microbiol., 1990, vol. 4, pp. 585–596.

    Article  PubMed  CAS  Google Scholar 

  21. Paluszynski, J.P., Klassen, R., Rohe, M., and Meinhardt, F., Various Cytosine/Adenine Permease Homologues Are Involved in the Toxicity of 5-Fluorocytosine in Saccharomyces cerevisiae, Yeast, 2006, vol. 23, no. 9, pp. 707–715.

    Article  PubMed  CAS  Google Scholar 

  22. Rajagopalan, K.V, Biosyntheses of the Molybdenum Cofactor, Escherichia coli and Salmonella, Cellular and Molecular Biology, Neidhardt, F.C., Ed., Washington, DC: ASM Press, 1996, pp. 674–679.

    Google Scholar 

  23. Kozmin, S.G., Pavlov, Y.I., Dunn, R.L., and Schaaper, R.M., Hypersensitivity of Escherichia coli Δ(uvrB-bio) Mutants to 6-Hydroxylaminopurine and Other Base Analogs Is Due to a Defect in Molybdenum Cofactor Biosynthesis, J. Bacteriol., 2000, vol. 182, pp. 3361–3367.

    Article  PubMed  CAS  Google Scholar 

  24. Kozmin, S.G. and Schaaper, R.M., Molybdenum Cofactor-Dependent Resistance to N-Hydroxylated Base Analogs in E. coli Is Independent of MobA Function, Mutat. Res., 2007, vol. 619, pp. 9–15.

    PubMed  CAS  Google Scholar 

  25. Burgis, N.E., Brucker, J.J., and Cunningham, R.P., Repair System for Noncanonical Purines in Escherichia coli, J. Bacteriol., 2003, vol. 185, pp. 3101–3110.

    Article  PubMed  CAS  Google Scholar 

  26. Marinaki, A.M., Ansari, A., Duley, J.A., et al., Adverse Drug Reactions to Azathioprine Therapy Are Associated with Polymorphism in the Gene Encoding Inosine Triphosphate Pyrophosphatase (ITPase), Pharmacogenetics, 2004, vol. 14, no. 3, pp. 181–187.

    Article  PubMed  CAS  Google Scholar 

  27. Schwarz, G., Molybdenum Cofactor Biosynthesis and Deficiency, Cell Mol. Life Sci., 2005, vol. 62, no. 23, pp. 2792–2810.

    Article  PubMed  CAS  Google Scholar 

  28. Moe, A., Ringvoll, J., Nordstrand, L., et al., Incision at Hypoxanthine Residues in DNA by a Mammalian Homologue of the Escherichia coli Antimutator Enzyme Endonuclease V, Nucleic Acids Res., 2003, vol. 31, no. 14, pp. 3893–3900.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Stepchenkova.

Additional information

Original Russian Text © E.I. Stepchenkova, S.G. Kozmin, V.V. Alenin, Yu.I. Pavlov, 2009, published in Genetika, 2009, Vol. 45, No. 4, pp. 471–477.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepchenkova, E.I., Kozmin, S.G., Alenin, V.V. et al. Genetic control of metabolism of mutagenic purine base analogs 6-hydroxylaminopurine and 2-amino-6-hydroxylaminopurine in yeast Saccharomyces cerevisiae . Russ J Genet 45, 409–414 (2009). https://doi.org/10.1134/S1022795409040048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795409040048

Keywords

Navigation