Skip to main content
Log in

Studying the pathogenesis of Alzheimer’s disease in a Drosophila melanogaster model: Human APP overexpression in the brain of transgenic flies leads to deficit of the synaptic protein synaptotagmin

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease whose main pathomorphological sign is synapse degeneration in the cortex and hippocampus. Abnormal synaptogenesis precedes amyloidosis and neurodegeneration and correlates with memory impairment during the early clinical phase. Mutations in the amyloid precursor protein (APP) gene cause familial AD and enhance the secretion of amyloid-β protein (Aβ). However, it remains unclear in what way APP and Aβ- are involved in synaptic disorder in the absence of visible amyloid structures. In this study, the role of the human APP gene in synaptogenesis in transgenic lines of Drosophila melanogaster whose nerve cells express the human APP695 isoform, truncated APPs, and the presynaptic marker synaptotagmin containing the green fluorescent protein (GFP) sequence. The expression of APP and its truncated forms caused a decrease in the synaptotagmin content of antennal lobes (ALs) and mushroom bodies (MBs) of the D. melanogaster brain, as well as neurodegeneration that progressed with age. The results suggest that abnormal synaptogenesis and neurodegeneration occur in the Drosophila brain in the absence of β-. It is assumed that impaired cellular functions of APP and secretion of β- independently contribute to the pathogenesis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis, K.L. and Samuels, S.C., in Pharmacological Management of Neurological and Psychiatric Disorders, New York: McGraw-Hill, 1998, pp. 267–316.

    Google Scholar 

  2. George-Hyslop, P.H., Genetic Factors in the Genesis of Alzheimer’s Disease, Ann. N.Y. Acad. Sci., 2000, vol. 924, pp. 1–7.

    Article  Google Scholar 

  3. Terry, R.D., The Pathogenesis of Alzheimer’s Disease: What Causes Dementia?, in Neurophilosophy and Alzheimer’s Disease, Christen, Y., et al., Eds., Berlin: Springer, 1992, pp. 123–130.

    Google Scholar 

  4. Terry, R.D., Where in the Brain Does Alzheimer’s Disease Begin?, Ann. Neurol., 2000, vol. 47, p. 421.

    Article  PubMed  CAS  Google Scholar 

  5. Masliah, E., Mallory, M., Hansen, L., et al., Synaptic and Neuritic Alterations during the Progression of Alzheimer’s Disease, Neurosci. Lett., 1994, vol. 174, pp. 67–72.

    Article  PubMed  CAS  Google Scholar 

  6. Hardy, J.A. and Higgins, G.A., Alzheimer’s Disease: The Amyloid Cascade Hypothesis, Science, 1992, vol. 256, pp. 184–185.

    Article  PubMed  CAS  Google Scholar 

  7. Hardy, J. and Selkoe, D.J., The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics: An Updated Summary of the Amyloid Hypothesis, Science, 2002, vol. 297, pp. 353–356.

    Article  PubMed  CAS  Google Scholar 

  8. Walsh, D.M. and Selkoe, D.J., Deciphering the Molecular Basis of Memory Failure in Alzheimer’s Disease, Neuron, 2004, vol. 44, pp. 181–193.

    Article  PubMed  CAS  Google Scholar 

  9. Oddo, S., Caccamo, A., Shepherd, J.D., et al., Triple-Transgenic Model of Alzheimer’s Disease with Plaques and Tangles: Intracellular Abeta and Synaptic Dysfunction, Neuron, 2003, vol. 39, pp. 409–21.

    Article  PubMed  CAS  Google Scholar 

  10. Stenh, C., Nilsbert, C., Hammarback, J., et al., The Arctic Mutation Interferes with Processing of the Amyloid Precursor Protein, Neuroreport, 2002, vol. 13, pp. 1857–1860.

    Article  PubMed  CAS  Google Scholar 

  11. Bentahir, M., Nyabi, O., Verhamme, J., et al., Presenilin Clinical Mutations Can Affect γ Secretase Activity by Different Mechanisms, J. Neurochem., 2006, vol. 96, pp. 732–742.

    Article  PubMed  CAS  Google Scholar 

  12. Kumar-Singh, S., Theuns, J., Van Broeck, B., et al., Mean Age-of-Onset of Familial Alzheimer Disease Caused by Presenilin Mutations Correlates with Both Increased Aβ-42 and Decreased Aβ-40, Hum. Mutation, 2006, vol. 27, pp. 686–695.

    Article  CAS  Google Scholar 

  13. Littleton, J.T., Bellen, H.J., and Perin, M.S., Expression of Synaptotagmin in Drosophila Reveals Transport and Localization of Synaptic Vesicles to the Synapse, Development, 1993, vol. 118, pp. 1077–108814.

    PubMed  CAS  Google Scholar 

  14. Masliah, E., Mallory, M., Alford, M., et al., Altered Expression of Synaptic Proteins Occurs Early during Progression of Alzheimer’s Disease, Neurology, 2001, vol. 127–129.

  15. Yao, P.J., Bushlin, I., and Furukawa, K., Preserved Synaptic Vesicle Recycling in Hippocampal Neurons in a Mouse Alzheimer’s Disease Model, Biochem. Biophys. Res. Commun., 2005, vol. 330, pp. 34–38.

    Article  PubMed  CAS  Google Scholar 

  16. Kiseli, D., Prakticheskaya mikrotekhnika i gistokhimiya (Practical Microtechnique and Histochemistry), Budapest: Akad. Nauk Vengrii, 1962.

    Google Scholar 

  17. De Strooper, B. and Annaert, W., Proteolytic Processing and Cell Biological Functions of the Amyloid Precursor Protein, J. Cell Sci., 2000, vol. 113, pp. 1857–1870.

    PubMed  Google Scholar 

  18. Hardy, J., Amyloid, the Presenilins and Alzheimer’s Disease, Trends Neurosci., 1997, vol. 20, pp. 154–159.

    Article  PubMed  CAS  Google Scholar 

  19. Mullan, M., Crawford, F., Axelman, K., et al., A Pathogenic Mutation for Probable Alzheimer’s Disease in the APP Gene at the N-Terminus of β Amyloid, Nat. Genet., 1992, vol. 1, pp. 345–347.

    Article  PubMed  CAS  Google Scholar 

  20. Moechars, D. and Dewachter, I., Lorent, K., et al., Early Phenotypic Changes in Transgenic Mice That Overexpress Different Mutants of Amyloid Precursor Protein in Brain, J. Biol. Chem., 1999, vol. 274, pp. 6483–6492.

    Article  PubMed  CAS  Google Scholar 

  21. Krezowski, J., Knudson, D., Ebeling, C., et al., Identification of Loci Determining Susceptibility to the Lethal Effects of Amyloid Precursor Protein Transgene Overexpression, Hum. Mol. Gen., 2004, vol. 13, pp. 1989–1997.

    Article  PubMed  CAS  Google Scholar 

  22. Ting, J.T., Kelley, B.G., Lambert, T.J., et al., Amyloid Precursor Protein Overexpression Depresses Excitatory Transmission through Both Presynaptic and Postsynaptic Mechanisms, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 353–358.

    Article  PubMed  CAS  Google Scholar 

  23. Saura, C.A., Choi, S.-Y., Beglopoulos, V., et al., Loss of Presenilin Function Causes Impairments of Memory and Synaptic Plasticity Followed by Age-Dependent Neurodegeneration, Neuron, 2004, vol. 42, pp. 23–36.

    Article  PubMed  CAS  Google Scholar 

  24. Sarantseva, S.V. and Shvartsman, A.L., Alzheimer’s Disease: Amyloidosis or Synaptic Dysfunction? Lessons from Drosophila melanogaster Model, Ekol. Genet., 2005, vol. 3, pp. 19–25.

    Google Scholar 

  25. Dyrks, T., Dyrks, E., Masters, C., and Beyreuther, K., Membrane Inserted APP Fragments Containing the flA4 Sequence of Alzheimer’s Disease Do not Aggregate, FEBS Lett., 1992, vol. 309, pp. 20–24.

    Article  PubMed  CAS  Google Scholar 

  26. Tienari, P.J., De Strooper, B., Ikonen, E., et al., The Beta-Amyloid Domain Is Essential for Axonal Sorting of Amyloid Precursor Protein, EMBO J., 1996, vol. 15, pp. 5218–5229.

    PubMed  CAS  Google Scholar 

  27. Adolfsen, B., Saraswati, S., Yoshihara, M., and Littleton, J.T., Synaptotagmins Are Trafficked to Distinct Subcellular Domains Including the Postsynaptic Compartment, J. Cell Biol., 2004, vol. 166, pp. 249–260.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang, Y.Q., Rodesch, C.K., and Broadie, K., Living Synaptic Vesicle Marker: Synaptotagmin-GFP, Genesis, 2002, vol. 34, pp. 142–145.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sarantseva.

Additional information

Original Russian Text © S.V. Sarantseva, O.I. Bolshakova, S.I. Timoshenko, D.I. Rodin, M. Vitek, A.L. Schwarzman, 2009, published in Genetika, 2009, Vol. 45, No. 1, pp. 119–126.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarantseva, S.V., Bolshakova, O.I., Timoshenko, S.I. et al. Studying the pathogenesis of Alzheimer’s disease in a Drosophila melanogaster model: Human APP overexpression in the brain of transgenic flies leads to deficit of the synaptic protein synaptotagmin. Russ J Genet 45, 105–112 (2009). https://doi.org/10.1134/S1022795409010153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795409010153

Keywords

Navigation