Skip to main content
Log in

Molecular evolution of mobile elements of the gypsy group: A homolog of the gag gene in Drosophila

  • Molecular Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Retrotransposons of the gypsy group of Drosophila melanogaster that are structurally similar to retroviruses of vertebrates occupy an important place among retroelements of eukaryotes. The infectious abilities of some retrotransposons of this group (gypsy, ZAM, and Idefix) have been demonstrated experimentally, and therefore they are true retroviruses. It is supposed that retrotransposons can evolve acquiring new components, the sources of which remain to be elucidated. In this work, the CG4680gene (Gag related protein, Grp) homologous to gag of retrotransposons of the gypsy group has been identified in the genome of D. melanogaster and characterized. The Grp gene product has a highly conserved structure in different species of the Drosophilidae family and is under of purifying selection, which suggests its important genomic function in Drosophila. In view of the earlier data, it can be concluded that homologous genes of all components of gypsy retrotransposons are present in the Drosophila genome. These genes can be both precursors and products of domestication of retrovirus genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hardman, N., Structure and Function of Repetitive DNA in Eukaryotes, Biochem. J., 1986, vol. 234, no. 1, pp. 1–11.

    PubMed  CAS  Google Scholar 

  2. Temin, H.M., Origin of Retroviruses from Cellular Moveable Genetic Elements, Cell, 1980, vol. 21, no. 3, pp. 599–600.

    Article  PubMed  CAS  Google Scholar 

  3. Temin, H.M., Reverse Transcriptases: Retrons in Bacteria, Nature, 1989, vol. 339, no. 6222, pp. 254–255.

    Article  PubMed  CAS  Google Scholar 

  4. Song, S.U., Gerasimova, T., Kurkulos, M., et al., An env-Like Protein Encoded by a Drosophila Retroelement: Evidence That gypsy Is an Infectious Retrovirus, Genes Dev., 1994, vol. 8, no. 17, pp. 2046–2057.

    Article  PubMed  CAS  Google Scholar 

  5. Kim, A.I., Lyubomirskaya, N.V., Belyaeva, E.S., et al., The Introduction of Transposionally Active Copy of a Retrotransposon gypsy into the Stable Strain of Drosophila melanogaster, Mol. Gen. Genet., 1994, vol. 242, no. 4, pp. 472–477.

    Article  PubMed  CAS  Google Scholar 

  6. Leblanc, P., Desset, S., Giorgi, F., et al., Life Cycle of an Endogenous Retrovirus, ZAM, in Drosophila melanogaster, J. Virol., 2000, vol. 74, no. 22, pp. 10658–10669.

    CAS  Google Scholar 

  7. Boeke, J.D, Eickbush, T.H, Sandmeyer, S.B, and Voytas, D.F, Index of Viruses—Metaviridae, in ICTVdB—The Universal Virus Database, Version 4, Buchen-Osmond, C., Ed., New York: Columbia Univ., 2006.

    Google Scholar 

  8. Lung, O. and Blissard, G.W., A Cellular Drosophila melanogaster Protein with Similarity to Baculovirus F Envelope Fusion Proteins, J. Virol., 2005, vol. 79, no. 13, pp. 7979–7989.

    Article  PubMed  CAS  Google Scholar 

  9. Malik, H.S. and Henikoff, S., Positive Selection of Iris, a Retroviral Envelope-Derived Host Gene in Drosophila melanogaster, PLoS Genet., 2005, vol. 1, no. 4, p. e44.

    Article  PubMed  Google Scholar 

  10. Nefedova, L.N. and Kim, A.I., Evolution from Retrotransposons to Retroviruses: The Source and Origin of env Gene, Zh. Obshch. Biol., 2007, vol. 68, no. 6, pp. 459–467.

    PubMed  CAS  Google Scholar 

  11. Bowen, N.J. and McDonald, J.F., Drosophila Euchromatic LTR Retrotransposons Are Much Younger Than the Host Species in Which They Reside, Genome Res., 2001, vol. 11, no. 9, pp. 1527–1540.

    Article  PubMed  CAS  Google Scholar 

  12. Capy, P., Classification and Nomenclature of Retrotransposable Elements, Cytogenet. Genome Res., 2005, vol. 110, nos. 1–4, pp. 457–461.

    Article  PubMed  CAS  Google Scholar 

  13. McClure, M.A., Evolution of Retroposons by Acquisition or Deletion of Retrovirus-Like Genes, Mol. Biol. Evol., 1991, vol. 8, no. 6, pp. 835–856.

    PubMed  CAS  Google Scholar 

  14. Mugnier, N., Biemont, C., and Vieira, C., New Regulatory Regions of Drosophila 412 Retrotransposable Element Generated by Recombination, Mol. Biol. Evol., 2005, vol. 22, no. 3, pp. 747–757.

    Article  PubMed  CAS  Google Scholar 

  15. Malik, H.S., Henikoff, S., and Eickbush, T.H., Poised for Contagion: Evolutionary Origins of the Infectious Abilities of Invertebrate Retroviruses, Genome Res., 2000, vol. 10, no. 9, pp. 1307–1318.

    Article  PubMed  CAS  Google Scholar 

  16. Doolittle, R.F., Feng, D.F., Johnson, M.S., and McClure, M.A., Origins and Evolutionary Relationships of Retroviruses, Q. Rev. Biol., 1989, vol. 64, no. 1, pp. 1–30.

    Article  PubMed  CAS  Google Scholar 

  17. Xiong, Y. and Eickbush, T.H., Origin and Evolution of Retroelements Based upon Their Reverse Transcriptase Sequences, EMBO J., 1990, vol. 9, no. 10, pp. 3353–3362.

    PubMed  CAS  Google Scholar 

  18. Wan, H. and Wootton, J.C., A Global Compositional Complexity Measure for Biological Sequences: AT-Rich and GC-Rich Genomes Encode Less Complex Proteins, Comput. Chem., 2000, vol. 24, no. 1, pp. 71–94.

    Article  PubMed  CAS  Google Scholar 

  19. Rein, A., Henderson, L.E., and Levin, J.G., Nucleic-Acid-Chaperone Activity of Retroviral Nucleocapsid Proteins: Significance for Viral Replication, Trends Biochem. Sci., 1998, vol. 23, no. 8, pp. 297–301.

    Article  PubMed  CAS  Google Scholar 

  20. Gabus, C., Ivanyi-Nagy, R., Depollier, J., et al., Characterization of a Nucleocapsid-Like Region and of Two Distinct Primer tRNALys, 2 Binding Sites in the Endogenous Retrovirus Gypsy, Nucleic Acids Res., 2006, vol. 34, no. 20, pp. 5764–5777.

    Article  PubMed  CAS  Google Scholar 

  21. Nethe, M., Berkhout, B., and van der Kuyl, A.C., Retroviral Superinfection Resistance, Retrovirology, 2005, vol. 2, p. 52.

    Article  PubMed  Google Scholar 

  22. Dupressoir, A., Marceau, G., Vernochet, C., et al., Syncytin-A and syncytin-B, Two Fusogenic Placenta-Specific Murine Envelope Genes of Retroviral Origin Conserved in Muridae, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 3, pp. 725–730.

    Article  PubMed  CAS  Google Scholar 

  23. Brandt, J., Veith, A.M., and Volff, J.N., A Family of Neofunctionalized Ty3/gypsy Retrotransposon Genes in Mammalian Genomes, Cytogenet. Genome Res., 2005, vol. 110, nos. 1–4, pp. 307–317.

    Article  PubMed  CAS  Google Scholar 

  24. Campillos, M., Doerks, T., Shah, P.K., and Bork, P., Computational Characterization of Multiple Gag-Like Human Proteins, Trends Genet., 2006, vol. 22, no. 11, pp. 585–589.

    Article  PubMed  CAS  Google Scholar 

  25. Nefedova, L.N. and Kim, A.I., Evolution of Errantiviruses of Drosophila melanogaster, Strategy 2: From Retroviruses to Retrotransposons, Russ. J. Genet., 2007, vol. 43, no. 10, pp. 1388–1395.

    Article  CAS  Google Scholar 

  26. Kaminker, J.S., Bergman, C.M., Kronmiller, B., et al., The Transposable Elements of the Drosophila melanogaster Euchromatin: A Genomics Perspective, Genome Biol., 2002, vol. 3, no. 12, RESEARCH0084.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kim.

Additional information

Original Russian Text © L.N. Nefedova, A.I. Kim, 2009, published in Genetika, 2009, Vol. 45, No. 1, pp. 30–37.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nefedova, L.N., Kim, A.I. Molecular evolution of mobile elements of the gypsy group: A homolog of the gag gene in Drosophila . Russ J Genet 45, 23–29 (2009). https://doi.org/10.1134/S1022795409010037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795409010037

Keywords

Navigation