Skip to main content
Log in

Using the method of natural samples for studying the variability in sugar beat (Beta vulgaris L.) agamospermous seed progeny

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The existence of natural genetic and natural mixed samples of seeds was theoretically grounded and experimentally demonstrated. A natural genetic sample is detected when analyzing the seed agamospermous progeny in the sequence coinciding with the sequence of seed setting, i.e., in the order they are located on a branch. The method of natural genetic samples has demonstrated the presence of individual regions with nonrandom distribution of phenotypic classes of agamospermous seeds on the branches of sugar beet plants. This phenotype distribution reflects the state of somatic cells on extended branch regions and the manifestation of this state in seed-bud cells. In turn, the genotype of each seed reflects the state of the seed-bud cell (apozygote) that gave rise to embryo development. We also demonstrated heterogeneity in the ratios of enzyme phenotypes of the seeds set on individual branches, regarding it as a result of the changes arising in somatic tissues at the moment of branching. Analysis of the ratios of seed phenotypes on individual branches of the same plant was named the method of natural mixed samples. The combination of natural genetic and natural mixed samples provides for identifying and analyzing various modes of seed setting (gamospermy and agamospermy) and studying the factors that influence the variability in these processes. We postulated that the nonrandom distribution and ratio of the seed phenotypes on plant branches resulted from a nonrandom endoreduplication of the homologous regions in homologous chromosomes carrying the marker locus alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maletskii, S.I. and Maletskaya, E.I., Self-Fertility and Agamospermy in Sugar Beet, Russ. J. Genet., 1996, vol. 32, no. 12, pp. 1431–1437.

    CAS  Google Scholar 

  2. Levites, E.V., Shkutnik, T., Ovechkina, O.N., and Maletskii, S.I., Pseudosegregation in Agamospermic Progeny of Male-Sterile Plants of Sugar Beet (Beta vulgaris L.) Plants, Dokl. Akad. Nauk, 1998, vol. 362, no. 3, pp. 430–432.

    CAS  Google Scholar 

  3. Levites, E.V., Kirikovich, S.S., and Denisova, F.Sh., Expression of Enzyme Genes in Agamospermous Progenies of Reciprocal Hybrids of Sugar Beet, Sugar Tech., 2001, vol. 3, no. 4, pp. 160–165.

    Article  Google Scholar 

  4. Levites, E.V., Shkutnik, T., Shavorskaya, O.A., and Denisova, F.Sh., Epigenetic Variability in Agamospermous Progeny of Sugar Beet, Sugar Tech., 2001, vol. 3, no. 3, pp. 101–105.

    Article  Google Scholar 

  5. McClintock, B., Chromosome Organization and Genic Expression, Cold Spring Harbor Symp. Quant. Biol., 1951, vol. 16, pp. 13–47.

    PubMed  CAS  Google Scholar 

  6. Levites, E.V., Geneticheskie aspekty ponyatii: pol, semya, plod (Genetic Aspects of the Sex, Semen, and Fetus Concepts), Novosibirsk: ITsiG SO RAN, 2003.

    Google Scholar 

  7. Levites, E.V. and Kirikovich, S.S., Natural Genetic Sampling: A New Approach to the Study of Agamospermy in Pollen-Sterile Sugar Beet (Beta vulgaris L.) Plants, Sugar Tech., 2005, vol. 7, no. 4, pp. 145–149.

    Article  CAS  Google Scholar 

  8. Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya Shkola, 1973.

    Google Scholar 

  9. Vasnev, S.A., Statistika: uchebnoe posobie (Statistics: Handbook), Moscow: MGUP, 2001.

    Google Scholar 

  10. Owen, F.W., Inheritance of Cross-and Self-Sterility in Beta vulgaris L., J. Agric. Rec., 1942, vol. 1, pp. 679–698.

    Google Scholar 

  11. Maletskii, S.I. and Konovalov, A.A., Inheritance of Alcohol Dehydrogenase in Sugar Beet: I. Analysis of Deviations from Monogenic Segregation, Genetika (Moscow), 1985, vol. 21, no. 9, pp. 1527–1540.

    CAS  Google Scholar 

  12. Levites, E.V., The Genetic Control of NADP-Dependent Malic Enzyme in Sugar Beet (Beta vulgaris L.), Dokl. Akad. Nauk SSSR, 1979, vol. 249, no. 1, pp. 215–217.

    CAS  Google Scholar 

  13. Levites, E.V. and Garifullina, F.Sh., Use of Isozymes as Genetic Markers for Identification of Sugar Beet Varieties, Biochemical Identification of Varieties, Proc. 3th Int. Symp. ISTA, Leningrad, 1988, pp. 104–109.

  14. Meizel, S. and Markert, C.L., Malate Dehydrogenase Isozymes of the Marine Snail Ilyanassa obsolete, Arch. Biochem. Biophys., 1967, vol. 122, pp. 753–765.

    Article  CAS  Google Scholar 

  15. Schwartz, D., The Genetic Control of Alcohol Dehydrogenase in Maize: Gene Duplication and Repression, Proc. Natl. Acad. Sci. USA, 1966, vol. 56, pp. 1431–1436.

    Article  PubMed  CAS  Google Scholar 

  16. Scandalios, J.G., Genetic Control of Multiple Forms of Enzymes in Plants: A Review, Biochem. Genet., 1969, vol. 3, no. 1, pp. 37–79.

    Article  CAS  Google Scholar 

  17. Weber, E., Grundriss der Biologischen Statistik, Stuttgart: Gustav Fischer, 1986.

    Google Scholar 

  18. D’Amato, F., Cytogenetics of Plant Cell and Tissue Cultures and Their Regenerantes, CRC Crit. Rev. Plant Sci., 1985, vol. 3, no. 1, pp. 73–112.

    Article  Google Scholar 

  19. Cionini, P.G., Cavallini, A., Corsi, R., and Fogli, M., Comparison of Homologous Polytene Chromosome in Phaseolus cocineus Embryo Suspensor Cells: Morphological, Autoradiographic and Cytophotometric Analyses, Chromosoma, 1982, vol. 86, pp. 383–396.

    Article  Google Scholar 

  20. Barow, M., Endopolyploidy in Seed Plants, BioEssays, 2006, vol. 28, no. 3, pp. 271–281.

    Article  PubMed  CAS  Google Scholar 

  21. Levites, E.V., Theoretical and Practical Aspects of Studies in Epigenetic Variability in Sugarbeet, Sugar Tech., 2003, vol. 5, no. 4, pp. 209–211.

    Article  CAS  Google Scholar 

  22. Levites, E.V., Sugarbeet Plants Produced by Agamospermy as a Model for Studying Genome Structure and Function in Higher Plants, Sugar Tech., 2005, vol. 7, nos. 2/3, pp. 67–70.

    Article  Google Scholar 

  23. Levites, E.V., Marker Enzyme Phenotype Ratios in Agamospermous Sugarbeet Progenies as a Demonstration of Multidimensional Encoding of Inherited Information in Plants, 2007, http://arxiv.org/abs/q-bio/0701027

  24. Mosolov, A.N., New Approaches to the Solution of the Spatial Distribution of Chromosomes in the Interphase Nucleus (Polar Model of the Interphase Nucleus), Tsitologiya, 1972, vol. 14, no. 5, pp. 541–552.

    CAS  Google Scholar 

  25. Stegnii, V.N., Arkhitektonika genoma, sistemnye mutatsii i evolyutsiya (Genome Architectonics, Systemic Mutations, and Evolution), Novosibirsk: Izd. Novosibirsk Univ., 1993.

    Google Scholar 

  26. Khokhlov, S.S., Apomixis: Classification and Distribution in Angiosperms, Usp. Sovrem. Genet., 1967, vol. 1, pp. 43–105.

    Google Scholar 

  27. Maletskii, S.I., Levites, E.V., Baturin, S.O., and Yudanova, S.S., Reproduktivnaya biologiya pokrytosemennykh rastenii: Geneticheskii slovar’ (Reproductive Biology of Angiosperms: Genetic Vocabulary), Novosibirsk: Inst. Tsitol. Genet., 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Levites.

Additional information

Original Russian Text © E.V. Levites, S.S. Kirikovich, 2008, published in Genetika, 2008, Vol. 44, No. 11, pp. 1493–1502.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levites, E.V., Kirikovich, S.S. Using the method of natural samples for studying the variability in sugar beat (Beta vulgaris L.) agamospermous seed progeny. Russ J Genet 44, 1296–1303 (2008). https://doi.org/10.1134/S1022795408110070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795408110070

Keywords

Navigation