Skip to main content
Log in

Epimutations of imprinted genes in the human genome: Classification, causes, association with hereditary pathology

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genomic imprinting is an epigenetic phenomenon characterized by monoallelic expression of the genes depending on their parental origin. The molecular basis of this expression is covalent modifications of DNA and histones that are formed during maturation of germline cells. Abnormalities of the establishment of genomic imprinting during gametogenesis or its maintenance at various stages of development, caused by aberrant epigenetic modifications of the chromatin, predominantly disturbance of DNA methylation state, are a form of mutational variability of imprinted genomic loci. In this review, we consider the spectrum of epimutations of imprinted genes, present their classification, and discuss possible causes of their appearance and their role in etiology of hereditary human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Jablonka, E., Epigenetic Epidemiology, Int. J. Epidemiol., 2004, vol. 33, pp. 929–935.

    Article  PubMed  Google Scholar 

  2. Whitelaw, N.C. and Whitelaw, E., How Lifetimes Shape Epigenotype within and across Generations, Hum. Mol. Genet., 2006, vol. 15, pp. R131–R137.

    Article  PubMed  CAS  Google Scholar 

  3. Santos-Rebouζas, C.B. and Pimentel, M.M.G., Implication of Abnormal Epigenetic Patterns for Human Diseases, Eur. J. Hum. Genet., 2007, vol. 15, pp. 10–17.

    Article  CAS  Google Scholar 

  4. Holliday, R., The Inheritance of Epigenetic Defects, Science, 1987, vol. 238, pp. 163–170.

    Article  PubMed  CAS  Google Scholar 

  5. Horsthemke, B., Epimutations in Human Disease, Curr. Top. Microbiol. Immunol., 2006, vol. 310, pp. 45–59.

    Article  PubMed  CAS  Google Scholar 

  6. Reik, W. and Walter, J., Genomic Imprinting: Parental Influence on the Genome, Nat. Rev. Genet., 2001, vol. 2, pp. 21–32.

    Article  PubMed  CAS  Google Scholar 

  7. Warren, S.T. and Sherman, S.L., The Fragile X Syndrome, The Metabolic and Molecular Bases of Inherited Disease, Scriver, S.R., Beaudet, A.L., Valle, D., Sly, W., Eds., New York: McGraw Hill, 2001, pp. 1257–1289.

    Google Scholar 

  8. Gabellini, D., Green, M.R., and Tupler, R., Inappropriate Gene Activation in FSHD: A Repressor Complex Binds a Chromosomal Repeat Deleted in Dystrophic Muscle, Cell, 2002, vol. 110, pp. 339–348.

    Article  PubMed  CAS  Google Scholar 

  9. Bickmore, W.A. and van der Maarel, S.M., Perturbations of Chromatin Structure in Human Genetic Disease: Recent Advances, Hum. Mol. Genet., 2003, vol. 12, pp. R207–R213.

    Article  PubMed  CAS  Google Scholar 

  10. Nazarenko, S.A., Epigenetic Modification of Genome and Human Diseases, Med. Genet., 2004, vol. 3, no. 2, pp. 70–77.

    Google Scholar 

  11. Vanyushin, B.F., DNA Methylation and Epigenetics, Russ. J. Genet., 2006, vol. 42, no. 9, pp. 985–978.

    Article  CAS  Google Scholar 

  12. Churikov, N.A., Molecular Mechanisms of Epigenetics, Biokhimiya, 2005, vol. 70, no. 4, pp. 493–513.

    Google Scholar 

  13. Bird, A., DNA Methylation Patterns and Epigenetic Memory, Genes Dev., 2002, vol. 16, pp. 6–21.

    Article  PubMed  CAS  Google Scholar 

  14. Li, E., Chromatin Modification and Epigenetic Reprogramming in Mammalian Development, Nat. Rev. Genet., 2002, vol. 3, pp. 662–673.

    Article  PubMed  CAS  Google Scholar 

  15. Martin, D.I.K., Ward, R., and Suter, C.M., Germline Epimutation: A Basis for Epigenetic Disease in Human, Ann. N.Y. Acad. Sci., 2005, vol. 1054, pp. 68–77.

    Article  PubMed  Google Scholar 

  16. Jablonka, E. and Lamb, M., Epigenetic Inheritance Systems, Evolution in Four Dimensions, Jablonka, E. and Lamb, M., Eds., MIT Press, 2005, pp. 242–265.

  17. Van den Veyver, I.B. and Al-Hussaini, T.K., Biparental Hydatidiform Moles: A Maternal Effect Mutation Affecting in the Offspring, Hum. Reprod., 2006, vol. 12, pp. 233–242.

    Google Scholar 

  18. Devriendt, K., Hydatidiform Mole and Triploidy: The Role of Genomic Imprinting in Placental Development, Hum. Reprod. Upd., 2005, vol. 11, pp. 137–142.

    Article  CAS  Google Scholar 

  19. Judson, H., Hayward, B.E., Sheridan, E., and Bonthron, D.T., A Global Disorder of Imprinting in the Human Female Germ Line, Nature, 2002, vol. 416, pp. 539–542.

    Article  PubMed  CAS  Google Scholar 

  20. El-Maarri, O., Seoud, M., Coullin, P., et al., Maternal Alleles Acquiring Paternal Methylation Patterns in Biparental Complete Hydatidiform Moles, Hum. Mol. Genet., 2003, vol. 12, pp. 1405–1413.

    Article  PubMed  CAS  Google Scholar 

  21. Nicholls, R.D. and Knepper, J.L., Genome Organization, Function, and Imprinting in Prader-Willi and Angelman Syndromes, Ann. Rev. Genomics Hum. Genet., 2001, vol. 2, pp. 153–175.

    Article  CAS  Google Scholar 

  22. Ohta, T., Gray, T.A., Rogan, P.K., et al., Imprinting-Mutation Mechanisms in Prader-Willi Syndrome, Am. J. Hum. Genet., 1999, vol. 64, pp. 397–413.

    Article  PubMed  CAS  Google Scholar 

  23. Perk, J., Makedonski, K., and Lande, L., The Imprinting Mechanism of the Prader-Willi/Angelman Region, EMBO J., 2002, vol. 21, pp. 5807–5814.

    Article  PubMed  CAS  Google Scholar 

  24. Steffenburg, S., Gillberg, C.L., Steffenburg, U., and Kyllerman, M., Autism in Angelman Syndrome: A Population-Based Study, Pediatr. Neurol., 1996, vol. 14, no. 2, pp. 131–136.

    Article  PubMed  CAS  Google Scholar 

  25. Rougeulle, C., Cardoso, C., Fontes, M., et al., An Imprinted Antisense RNA Overlaps UBE3A and a Second Maternally Expressed Transcript, Nat. Genet., 1998, vol. 19, pp. 15–16.

    Article  PubMed  CAS  Google Scholar 

  26. Bielinska, B., Blaydes, S.M., Buiting, K., et al., De novo Deletions of SNRPN Exon 1 in Early Human and Mouse Embryos Result in a Paternal to Maternal Imprinting Switch, Nat. Genet., 2000, vol. 25, pp. 74–78.

    Article  PubMed  CAS  Google Scholar 

  27. Wey, E., Bartholdi, D., Riegel, M., et al., Mosaic Imprinting Defect in a Patient with an Almost Typical Expression of the Prader-Willi Syndrome, Eur. J. Hum. Genet., 2005, vol. 13, pp. 273–277.

    Article  PubMed  CAS  Google Scholar 

  28. Nazlican, H., Zeschnigk, M., Claussen, U., et al., Somatic Mosaicism in Patients with Angelman Syndrome and an Imprinting Defect, Hum. Mol. Genet., 2004, vol. 13, pp. 2547–2555.

    Article  PubMed  CAS  Google Scholar 

  29. Gillessen-Kaesbach, G., Demuth, S., Thiele, H., et al., A Previously Unrecognized Phenotype Characterized by Obesity, Muscular Hypotonia, and Ability to Speak in Patients with Angelman Syndrome Caused by an Imprinting Defect, Eur. J. Hum. Genet., 1999, vol. 7, pp. 638–644.

    Article  PubMed  CAS  Google Scholar 

  30. Engel, J.R., Smallwood, A., Harper, A., et al., Epigenotype-Phenotype Correlations in Beckwith-Wiedemann Syndrome, J. Med. Genet., 2000, vol. 37, pp. 921–926.

    Article  PubMed  CAS  Google Scholar 

  31. DeBaun, M.R., Niemitz, E.L., McNeil, D.E., et al., Epigenetic Alterations of H19 and LIT1 Distinguish Patients with Beckwith-Wiedemann Syndrome with Cancer and Birth Defects, Am. J. Hum. Genet., 2002, vol. 70, pp. 604–611.

    Article  PubMed  CAS  Google Scholar 

  32. Gicquel, C., Rossignol, S., Cabrol, S., et al., Epimutation of the Telomeric Imprinting Center Region on Chromosome 11p15 in Silver-Russell Syndrome, Nat. Genet., 2005, vol. 37, pp. 1003–1007.

    Article  PubMed  CAS  Google Scholar 

  33. Bliek, J., Terhal, P., and Bogaard, M.J., et al., Hypomethylation of the H19 Gene Causes not Only Silver-Russell Syndrome (SRS) but also Isolated Asymmetry or an SRS-Like Phenotype, Am. J. Hum. Genet., 2006, vol. 78, pp. 604–614.

    Article  PubMed  CAS  Google Scholar 

  34. Schönherr, N., Meyer, E., Eggermann, K., et al., (Epi)mutations in 11p15 Significantly Contribute to Silver-Russell Syndrome: But Are They Generally Involved in Growth Retardation?, Eur. J. Med. Genet., 2006, vol. 49, pp. 414–418.

    Article  PubMed  Google Scholar 

  35. Chitayat, D., Friedman, J.M., Anderson, L., and Dimmick, J.E., Hepatocellular Carcinoma in a Child with Familial Russell-Silver Syndrome, Am. J. Med. Genet., 1988, vol. 31, pp. 909–914.

    Article  PubMed  CAS  Google Scholar 

  36. Delaval, K., Wagschal, A., and Feil, R., Epigenetic Deregulation of Imprinting in Congenital Diseases of Aberrant Growth, BioEssays, 2006, vol. 28, pp. 453–459.

    Article  PubMed  CAS  Google Scholar 

  37. Schönherr, N., Meyer, E., Roos, A., et al., The Centromeric 11p15 Imprinting Centre Is Also Involved in Silver-Russell Syndrome, J. Med. Genet., 2007, vol. 44, pp. 59–63.

    Article  PubMed  CAS  Google Scholar 

  38. Jirtle, R.L., Genomic Imprinting and Cancer, Exp. Cell Res., 1999, vol. 248, pp. 18–24.

    Article  PubMed  CAS  Google Scholar 

  39. Feinberg, A.P., Cui, H., and Ohlsson, R., DNA Methylation and Genomic Imprinting: Insights from Cancer into Epigenetic Mechanisms, Seminars Cancer Biol., 2002, vol. 12, pp. 389–398.

    Article  CAS  Google Scholar 

  40. Plass, C. and Soloway, P.D., DNA Methylation, Imprinting and Cancer, Eur. J. Hum. Genet., 2002, vol. 10, pp. 6–16.

    Article  PubMed  CAS  Google Scholar 

  41. Soejima, H., Joh, K., and Mukai, T., Gene Silencing in DNA Damage Repair, Cell Mol. Life Sci., 2004, vol. 61, pp. 2168–2172.

    Article  PubMed  CAS  Google Scholar 

  42. Scelfo, R.A., Schwienbacher, C., Veronese, A., et al., Loss of Methylation at Chromosome 11p15.5 Is Common in Human Adult Tumors, Oncogene, 2002, vol. 21, pp. 2564–2572.

    Article  PubMed  CAS  Google Scholar 

  43. Cassidy, S.B., Prader-Willi Syndrome, J. Med. Genet., 1997, vol. 34, pp. 917–923.

    Article  PubMed  CAS  Google Scholar 

  44. Bliek, J., Maas, S.M., Ruijter, J.M., et al., Increased Tumour Risk for BWS Patients Correlates with Aberrant H19 and not KCNQ1OT1 Methylation: Occurrence of KCNQ1OT1 Hypomethylation in Familial Cases of BWS, Hum. Mol. Genet., 2001, vol. 10, pp. 467–476.

    Article  PubMed  CAS  Google Scholar 

  45. Arnaud, Ph. and Feil, R., Epigenetic Deregulation of Genomic Imprinting in Human Disorders and Following Assisted Reproduction, Birth Defects Res. (Part C), 2005, vol. 75 pp. 81–97.

    Article  CAS  Google Scholar 

  46. Temple, I.K. and Shield, J.P., Transient Neonatal Diabetes, a Disorder of Imprinting, J. Med. Genet., 2002, vol. 12, pp. 872–875.

    Article  Google Scholar 

  47. Mackay, D.J.G., Hahnemann, J.M.D., Boonen, S.E., et al., Epimutation of the TNDM Locus and the Beckwith-Wiedemann Syndrome Centromeric Locus in Individuals with Transient Neonatal Diabetes Mellitus, Hum. Genet., 2006, vol. 119, pp. 179–184.

    Article  PubMed  CAS  Google Scholar 

  48. Arima, T., Kamikihara, T., Hayashida, T., et al., ZAC, LIT1 (KCNQ1OT1) and p57 KIP2 (CDKN1C) Are in an Imprinted Gene Network That May Play a Role in Beckwith-Wiedemann Syndrome, Nucleic Acids Res., 2005, vol. 33, no. 8, pp. 2650–2660.

    Article  PubMed  CAS  Google Scholar 

  49. Kagami, M., Nagai, T., Fukami, M., et al., Silver-Russell Syndrome in a Girl Born after in Vitro Fertilization: Partial Hypermethylation at the Differentially Methylated Region of PEG1/MEST, J. Assist. Reprod. Genet., 2007, vol. 24, pp. 131–136.

    Article  PubMed  Google Scholar 

  50. Lefebvre, L., Viville, S., Barton, S.C., et al., Abnormal Maternal Behaviour and Growth Retardation Associated with Loss of the Imprinted Gene Mest, Nat. Genet., 1998, vol. 20, pp. 163–169.

    Article  PubMed  CAS  Google Scholar 

  51. Kobayshi, S., Uemura, H., Kohda, T., et al., No Evidence of PEG1/MEST Gene Mutations in Silver-Russell Syndrome Patients, Am. J. Med. Genet., 2001, vol. 104, pp. 225–231.

    Article  Google Scholar 

  52. Kamikihara, T., Arima, T., Kato, K., et al., Epigenetic Silencing of the Imprinted Gene ZAC by DNA Methylation in the Progression of Human Ovarian Cancer, Int. J. Cancer, 2005, vol. 115, pp. 690–700.

    Article  PubMed  CAS  Google Scholar 

  53. Kawakami, T., Chano, T., Minami, K., et al., Imprinted DLK1 Is a Putative Tumor Suppressor Gene and Inactivated by Epimutation at the Region Upstream of GTL2 in Human Renal Cell Carcinoma, Hum. Mol. Genet., 2006, vol. 15, pp. 821–830.

    Article  PubMed  CAS  Google Scholar 

  54. Corn, P.G., Kuerbitz, S.J., van Noesel, M.M., et al., Transcriptional Silencing of the p73 Gene in Acute Lymphoblastic Leukemia and Burkitt’s Lymphoma Is Associated with 5′ CpG Island Methylation, Cancer Res., 1999, vol. 59, pp. 3352–3356.

    PubMed  CAS  Google Scholar 

  55. Mai, M., Qian, C., Yokomizo, A., et al., Loss of Methylation and Allele Switching of p73 in Renal Cell Carcinoma, Oncogene, 1998, vol. 17, pp. 1739–1741.

    Article  PubMed  CAS  Google Scholar 

  56. Mai, M., Yokomizo, A., Qian, C., et al., Activation of p73 Silent Allele in Lung Cancer, Cancer. Res., 1998, vol. 58, pp. 2347–2349.

    PubMed  CAS  Google Scholar 

  57. Kondo, M., Matsuoka, S., Uchida, H., et al., Selective Maternal-Allele Loss in Human Lung Cancers of the Maternally Expressed p57KIP2 Gene at 11p15.5, Oncogene, 1996, vol. 12, pp. 1365–1368.

    PubMed  CAS  Google Scholar 

  58. Taniguchi, T., Okamoto, K., and Reeve, A.E., Human p57(KIP2) Defines a New Imprinted Domain on Chromosome 11p but Is not a Tumour Suppressor Gene in Wilms Tumour, Oncogene, 1997, vol. 14, pp. 1201–1206.

    Article  PubMed  CAS  Google Scholar 

  59. Dowdy, S.C., Gostout, B.S., Shridhar, V., et al., Biallelic Methylation and Silencing of Paternally Expressed Gene 3 (PEG3) in Gynecologic Cancer Cell Lines, Gynecol. Oncol., 2005, vol. 99, pp. 126–134.

    Article  PubMed  CAS  Google Scholar 

  60. Xu, Y.Q., Grundy, P., and Polychronakos, C., Aberrant Imprinting of the Insulin-Like Growth Factor II Receptor Gene in Wilms’ Tumor, Oncogene, 1997, vol. 14, pp. 1041–1046.

    Article  PubMed  CAS  Google Scholar 

  61. Murrell, A., Heeson, S., Cooper, W.N., et al., An Association between Variants in the IGF2 Gene and Beckwith-Wiedemann Syndrome: Interaction between Genotype and Epigenotype, Hum. Mol. Genet., 2004, vol. 13, pp. 247–255.

    Article  PubMed  CAS  Google Scholar 

  62. Zogel, C., Bohringer, S., Gross, S., et al., Identification of Cis-and Trans-Acting Factors Possibly Modifying the Risk of Epimutations on Chromosome 15, Eur. J. Hum. Genet., 2006, vol. 14, no. 6, pp. 752–758.

    Article  PubMed  CAS  Google Scholar 

  63. Castro, R., Rivera, I., Ravasco, P., et al., 5,10-Methylenetetrahydrofolate Reductase (MTHFR) 677C > T and 1298A > C Mutations Are Associated with DNA Hypomethylation, J. Med. Genet., 2004, vol. 41, pp. 454–458.

    Article  PubMed  CAS  Google Scholar 

  64. Costello, J.F. and Plass, C., Methylation Matters, J. Med. Genet., 2001, vol. 38, pp. 285–303.

    Article  PubMed  CAS  Google Scholar 

  65. Jaenisch, R. and Bird, A., Epigenetic Regulation of Gene Expression: How the Genome Integrates Intrinsic and Environmental Signals, Nat. Genet., 2003, vol. 33, suppl., pp. 245–254.

    Article  PubMed  CAS  Google Scholar 

  66. Robertson, G.P., Huang, H.J., and Cavenee, W.K., Identification and Validation of Tumor Suppressor Genes, Mol. Cell Biol. Res. Commun., 1999, vol. 2, pp. 1–10.

    Article  PubMed  CAS  Google Scholar 

  67. Aapola, U., Liiv, I., and Peterson, P., Imprinting Regulator DNMT3L Is a Transcriptional Repressor Associated with Histone Deacetylase Activity, Nucleic Acids Res., 2002, vol. 30, pp. 3602–3608.

    Article  PubMed  CAS  Google Scholar 

  68. Aapola, U., Maenpaa, K., Kaipia, A., and Peterson, P., Epigenetic Modifications Affect Dnmt3L Expression, Biochem. J., 2004, vol. 380, part 3, pp. 705–713.

    Article  PubMed  CAS  Google Scholar 

  69. Bigey, P., Ramchandani, S., Theberge, J., et al., Transcription Regulation of the Human DNA Methyltransferase (DNMT1) Gene, Gene, 2000, vol. 242, pp. 407–418.

    Article  PubMed  CAS  Google Scholar 

  70. Slack, A., Cervoni, N., Pinard, M., and Szyf, M., Feedback Regulation of DNA Methyltransferase Gene Expression by Methylation, Eur. J. Biochem., 1999, vol. 264, pp. 191–199.

    Article  PubMed  CAS  Google Scholar 

  71. Ling, Y., Sankpal, U.T., Robertson, A.K., et al., Modification of de novo DNA Methyltransferase 3a (Dnmt3a) by SUMO-1 Modulates Its Interaction with Histone Deacetilases (HDACs) and Its Capacity to Repress Transcription, Nucleic Acids Res., 2004, vol. 32, pp. 598–610.

    Article  PubMed  CAS  Google Scholar 

  72. Macleod, D., Charlton, J., Mullins, J., and Bird, A.P., Sp1 Sites in the Mouse Aprt Gene Promoter Are Required to Prevent Methylation of the CpG Island, Genes Dev., 1994, vol. 8, pp. 2282–2292.

    Article  PubMed  CAS  Google Scholar 

  73. Bell, A.C., West, A.G., and Felsenfeld, G., The Protein CTCF Is Required for the Enhancer Blocking Activity of Vertebrate Insulators, Cell, 1999, vol. 98, pp. 387–396.

    Article  PubMed  CAS  Google Scholar 

  74. Yu, W., Giniala, V., and Pant, V., Poly(ADP-Ribosyl) ation Regulates CTCF-Dependent Chromatin Insulation, Nat. Genet., 2004, vol. 36, pp. 1105–1110.

    Article  PubMed  CAS  Google Scholar 

  75. Klenova, E.M. and Morse, H.C., III, Ohlsson R., Lobanenkov V.V. The Novel BORIS + CTCF Gene Family Is Uniquely Involved in the Epigenetics of Normal Biology and Cancer, Seminars Cancer Biol., 2002, vol. 12, pp. 399–314.

    Article  CAS  Google Scholar 

  76. Burke, L.J., Zhang, R., Bartkuhn, M., et al., CTCF Binding and Higher Order Chromatin Structure of the H19 Locus Are Maintained in Mitotic Chromatin, EMBO J., 2005, vol. 24, pp. 3291–3300.

    Article  PubMed  CAS  Google Scholar 

  77. Garfinkel, M.D. and Ruden, D.M., Chromatin Effects in Nutrition, Cancer, and Obesity, Nutrition, 2004, vol. 20, pp. 56–62.

    Article  PubMed  CAS  Google Scholar 

  78. Niemitz, E.L. and Feinberg, A., Epigenetics and Assisted Reproductive Technology: A Call for Investigation, Am. J. Hum. Genet., 2004, vol. 74, pp. 599–609.

    Article  PubMed  CAS  Google Scholar 

  79. Horsthemke, B. and Ludwig, M., Assisted Reproduction: The Epigenetic Perspective, Hum. Reprod. Upd., 2005, vol. 11, pp. 473–482.

    Article  Google Scholar 

  80. Lebedev, I.N. and Puzyrev, V.P., Epigenetic Perspectives of Safety in Assisted Reproductive Technologies, Russ. J. Genet., 2007, vol. 43, no. 9, pp. 961–972.

    Article  CAS  Google Scholar 

  81. Buiting, K., Gross, S., Lich, C., et al., Epimutations in Prader-Willi and Angelman Syndromes: A Molecular Study of 136 Patients with an Imprinting Defect, Am. J. Hum. Genet., 2003, vol. 72, pp. 571–577.

    Article  PubMed  CAS  Google Scholar 

  82. Suter, C.M., Martin, D.I., and Ward, R.L., Germline Epimutation of MLH1 in Individuals with Multiple Cancers, Nat. Genet., 2004, vol. 36, pp. 497–501.

    Article  PubMed  CAS  Google Scholar 

  83. Hitchins, M.P., Wong, J.J.L., Suthers, G., et al., Inheritance of a Cancer-Associated MLH1 Germ-Line Epimutation, N. Engl. J. Med., 2007, vol. 356, pp. 697–705.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Lebedev.

Additional information

Original Russian Text © I.N. Lebedev, E.A. Sazhenova, 2008, published in Genetika, 2008, Vol. 44, No. 10, pp. 1356–1373.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, I.N., Sazhenova, E.A. Epimutations of imprinted genes in the human genome: Classification, causes, association with hereditary pathology. Russ J Genet 44, 1176–1190 (2008). https://doi.org/10.1134/S1022795408100062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795408100062

Keywords

Profiles

  1. I. N. Lebedev