Skip to main content
Log in

Deleterious mutations in various Drosophila melanogaster strains carrying meiotic mutation c(3)G

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In the absence of meiotic recombination, deleterious mutations, decreasing the viability, are accumulated and fixed in small Drosophila populations. Study of the viability of hybrid progenies of three laboratory Drosophila melanogaster strains carrying meiotic mutation c(3)G 17 has suggested that the deleterious mutations are negatively synergistic in their interaction. The deleterious mutations localized to the pericentromeric region of chromosome 3 are threefold more efficient as compared with the mutations located in distal regions. Substitution of a new chromosome for the balancer chromosome in a strain with meiotic mutation c(3)G 17 partially restores (by ∼20%) the viability of homozygotes c(3)G 17/c(3)G 17 over the first 20–30 generations. Further cultivation for 30 generations with the same balancer again decreases the viability to the initial level. An epigenetic nature of deleterious mutations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Timofeeff-Ressovsky, N.W., Experimental Production of Mutations, Biol. Rev., 1934, vol. 9, no. 4, pp. 411–457.

    Article  Google Scholar 

  2. Kondrashov, A.S., Deleterious Mutations and Evolution of Sexual Reproduction, Nature, 1988, vol. 336, pp. 435–440.

    Article  PubMed  CAS  Google Scholar 

  3. Kondrashov, A.S., Classification of Hypothesis on the Advantage of Amphimixis, J. Hered., 1993, vol. 84, pp. 372–387.

    PubMed  CAS  Google Scholar 

  4. Kondrashov, A.S., The Asexual Ploidy Cycle and the Origin of Sex, Nature, 1994, vol. 370, pp. 213–216.

    Article  PubMed  CAS  Google Scholar 

  5. Li, E., Chromatin Modification and Epigenetic Reprogrammingin Mammalian Development, Nature Rev., 2002, vol. 3, pp. 662–673.

    Article  CAS  Google Scholar 

  6. Chubykin, V.L., Survival of Drosorhila melanogaster Progeny after Prolonged Suppression of Pairing and Recombination in Autosome 3, Russ. J. Genet., 2004, vol. 40, no. 11, p. 1223–1228.

    Article  CAS  Google Scholar 

  7. Muller, H.J., The Measurement of Gene Mutation Rate in Drosophila, Its High Variability, and Its Dependence upon Temperature, Genetics, 1928, vol. 13, pp. 279–357.

    PubMed  CAS  Google Scholar 

  8. Mukai, T., Chigusa, S.T., Mettler, L.E., and Crow, J.F., Mutation Rate and Dominance of Genes Affecting Viability in Drosophila melanogaster, Genetics, 1972, vol. 72, pp. 335–355.

    PubMed  CAS  Google Scholar 

  9. Ohnishi, O., Spontaneous and Ethyl Methanesulfonate-Induced Mutations Controlling Viability in Drosophila melanogaster: I. Recessive Lethal Mutations, Genetics, 1977, vol. 87, pp. 519–527.

    PubMed  CAS  Google Scholar 

  10. Houle, D. and Nuzhdin, S.V., Mutation Accumulation and the Effect of copia Insertion in Drosophila melanogaster, Genet. Res., 2004, vol. 83, pp. 7–18.

    Article  PubMed  CAS  Google Scholar 

  11. Gowen, M.S. and Gowen, J.W., Complete Linkage in Drosophila melanogaster, Am. Nat., 1922, vol. 56, pp. 286–288.

    Article  Google Scholar 

  12. Smith, P.A. and King, R.C., Genetic Control of Synaptonemal Complex in Drosophila melanogaster, Genetics, 1968, vol. 60, pp. 335–351.

    PubMed  CAS  Google Scholar 

  13. Bogdanov, Yu.F., Dadashev, S.Ya., and Grishaeva, T.M., Gene CG17604 of Drosophila melanogaster in Silico May Be the c(3)G, Dros. Inf. Service, 2001, vol. 84, pp. 84–88.

    Google Scholar 

  14. Lyndsley, D.L. and Grell, E.H., Genetic Variations of Drosophila melanogaster, Carnegie Inst. Wash. Publ., 1968, no. 627.

  15. Chubykin, V.L. and Omel’yanchuk, L.V., Relative Positions of Nonhomologous Chromosomes Inferred from Interchromosomal Exchanges in Drosorhila melanogaster, Genetika (Moscow), 1989, vol. 25, no. 2, pp. 292–300.

    Google Scholar 

  16. Chovnick, A., Gene Conversion and Transfer of Genetic Information within the Invert Region of Inversion Heterozygotes, Genetics, 1973, vol. 75, pp. 123–131.

    PubMed  CAS  Google Scholar 

  17. Schaeffer, S.W. and Andersen, W.W., Mechanisms of Genetic Exchange within the Chromosomal Inversions of Drosophila pseudoobscura, Genetics, 2005, vol. 171, pp. 1729–1739.

    Article  PubMed  CAS  Google Scholar 

  18. Lynch, M., Destabilizing Hybridization, General-Purpose Genotypes and Geographical Parthenogenesis, Quart. Rev. Biol., 1984, vol. 59, pp. 257–289.

    Article  Google Scholar 

  19. Lynch, M., Blanchard, J., Houle, D., et al., Perspective: Spontaneous Deleterious Mutation, Evolution, 1999, vol. 53, pp. 645–663.

    Article  Google Scholar 

  20. Fry, J.D., Heinsohn, S.L., and Nuzhdin, S.V., New Estimates of Rates and Effects of Mildly Deleterious Mutation in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 574–579.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Chubykin.

Additional information

Original Russian Text © V.L. Chubykin, 2008, published in Genetika, 2008, Vol. 44, No. 9, pp. 1209–1215.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chubykin, V.L. Deleterious mutations in various Drosophila melanogaster strains carrying meiotic mutation c(3)G . Russ J Genet 44, 1054–1060 (2008). https://doi.org/10.1134/S102279540809007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279540809007X

Keywords

Navigation