Skip to main content
Log in

Interaction between checkpoint genes RAD9, RAD17, RAD24, RAD53, and genes SRM5/CDC28, SRM8/NET1, and SRM12/HFI1 involved in the determination of yeast Saccharomyces cerevisiae sensitivity to ionizing radiation

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Analysis of radiosensitivity of double mutants in the yeast Saccharomyces cerevisiae revealed that checkpoint genes RAD9, RAD17, RAD24, and RAD53 along with genes CDC28 and NET1 belong to one epistasis group designated the RAD9 group. The use of srm mutations allowed the demonstration of a branched RAD9-dependent pathway of cell radioresistance. Mutation cdc28-srm is hypostatic to rad9Δ, rad17Δ, and rad24Δ being additive with rad53. Mutation net1-srm is hypostatic to rad9Δ and rad53 but additively enhance the effects of mutations rad17Δ and rad24Δ. Gene SRM12/HFI1 is not a member of the RAD9 group. Mutation in gene hfi1-srm manifests the additive effect on mutations rad24Δ and rad9Δ. The analyzed genes can also participate in minor mechanisms of radioresistance that are relatively independent of the above RAD9-dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.B., Lewis, L.K., Karthikeyan, G., et al., Genes Required for Ionizing Radiation Resistance in Yeast, Nat. Genet., 2001, vol. 29, pp. 426–434.

    Article  PubMed  CAS  Google Scholar 

  2. Game, J.C., The Saccharomyces Repair Genes at the End of the Century, Mutat. Res., 2000, vol. 451, pp. 277–293.

    PubMed  CAS  Google Scholar 

  3. Devin, A.B., Prosvirova, T.Yu., Peshekhonov, V.T., et al., The Start Gene CDC28 and the Genetic Stability of Yeast, Yeast, 1990, vol. 6, pp. 231–243.

    Article  PubMed  CAS  Google Scholar 

  4. Koltovaya, N.A., Guerasimova, A.S., Tchekhouta, I.A., and Devin, A.B., NET1 and HFI1 Genes of Yeast Mediate Both Chromosome Maintenance and Mitochondrial rho Mutagenesis, Yeast, 2003, vol. 20, pp. 955–971.

    Article  PubMed  CAS  Google Scholar 

  5. Devin, A.B., Koltovaya, N.A., Gavrilov, B.V., and Arman, I.P., Isolation and Characterization of New Nuclear srm Gene Mutations that Change the Maintenance of Both Nuclear and Mitochondrial Genetic Structures in the Yeast Saccharomyces, Russ. J. Genet., 1994, vol. 30, no. 9, pp. 1036–1042.

    Google Scholar 

  6. Koltovaya, N.A., Karviga, T.D., Lyubimova, K.A., et al., Radiation Sensitivity of the Yeast Saccharomyces and SRM Genes: Effects of srm1 and srm5 Mutations, Russ. J. Genet., 1998, vol. 34, no. 5, pp. 493–506.

    CAS  Google Scholar 

  7. Koltovaya, N.A., Maiorova, E.S., Rzyanina, A.V., et al., New mutations of SRM genes in Saccharomyces cerevisiae and Certain Characteristics of Their Phenotypic Effects, Russ. J. Genet., 2001, vol. 37, no. 9, pp. 1014–1024.

    Article  CAS  Google Scholar 

  8. Baranowska, H., Swietlinska, Z., Zaborowska, D., and Zuk, J., Cdc and prt Mutants of Saccharomyces cerevisiae with Increased Sensitivity to Diepoxybutane and Ultraviolet, Acta Microbiol. Pol. Safetyn., 1982, vol. 31, pp. 119–128.

    CAS  Google Scholar 

  9. Ostroff, R.M. and Sclafani, R.A., Cell Cycle Regulation of Induced Mutagenesis in Yeast, Mutat. Res., 1995, vol. 329, pp. 143–152.

    PubMed  CAS  Google Scholar 

  10. Lorincz, A.T. and Reed, S.I., Sequence Analysis of Temperature-Sensitive Mutations in the Saccharomyces cerevisiae Gene CDC28, Mol. Cell. Biol., 1986, vol. 6, pp. 4099–4103.

    PubMed  CAS  Google Scholar 

  11. Kholmurodov, Kh.T., Kretov, D.A., Guerasimova, A.S., and Koltovaya, N.A., Molecular Dynamics Modeling of the Substitution of Serine for the Conservative Glycine in the G-Loop in the Yeast cdc28-srm Mutant Using the Crystalline Lattice of Human Kinase CDK2, Biofizika, 2006, vol. 51, pp. 679–691.

    PubMed  CAS  Google Scholar 

  12. Koltovaya, N.A. and Devin, A.B., srm Mutations and γ-Sensitivity of Yeast Saccharomyces, in Trudy rabochego soveshchaniya po geneticheskomu deistviyu korpuskulyarnykh izluchenii (Proceedings of Workshop on Genetic Effect of Corpuscular Radiation), Dubna, 1989, pp. 145–149.

  13. Koltovaya, N.A. and Devin, A.B., Coordination of Mitotic Stability of Genetic Structures and the Radiation Sensitivity of Yeast Saccharomyces, Dokl. Akad. Nauk SSSR, 1990, vol. 315, pp. 986–990.

    Google Scholar 

  14. Koltovaya, N.A., Arman, I.P., and Devin, A.B., Mutation of the CDC28 Gene and the Radiation Sensitivity of Saccharomyces cerevisiae, Yeast, 1998, vol. 14, pp. 133–146.

    Article  PubMed  CAS  Google Scholar 

  15. Meyn, M.A. and Holloway, S.L., S-Phase Cyclins Are Required for a Stable Arrest at Metaphase, Curr. Biol., 2000, vol. 10, pp. 1599–1602.

    Article  PubMed  CAS  Google Scholar 

  16. Cuperus, G., Shafaatian, R., Shore, D., Locus Specificity Determinants in the Multifunctional Yeast Silencing Protein Sir2, EMBO J., 2000, vol. 19, pp. 2641–2651.

    Article  PubMed  CAS  Google Scholar 

  17. Traverso, E.E., Baskerville, C., Liu, Y., et al., Characterization of the Net1 Cell Cycle-Dependent Regulator of the Cdc14 Phosphatase from Budding Yeast, J. Biol. Chem., 2001, vol. 276, pp. 21924–21931.

    Article  PubMed  CAS  Google Scholar 

  18. Koltovaya, N.A. and Devin, A.B., New Nuclear Gene Mutations That Cause Coordinate Changes in Mitotic Stability of Various Genetic Structures in Saccharomyces cerevisiae, Yeast, 1995, vol. 11, p. 72.

    Google Scholar 

  19. Horiuchi, J., Silverman, N., Pina, B., et al., ADA1, a Novel Component of the ADA/GCN5 Complex, Has Broader Effects Than GCN5, ADA2, or ADA3, Mol. Cell. Biol., 1997, vol. 17, pp. 3220–3228.

    PubMed  CAS  Google Scholar 

  20. Sherman, F., Fink, G.R., and Hicks, J.B., Laboratory Course Manual for Methods in Yeast Genetics, New York: Cold Spring Harbor Lab., 1986.

    Google Scholar 

  21. Koltovaya, N.A., Nikulushkina, Yu.V., Roshina, M.P., and Devin, A.B., Interactions of Chekpoint-Genes RAD9, RAD17, RAD24 and RAD53 in Determining Radioresistance of Yeast Saccharomyces, Russ. J. Genet., 2008, vol. 44, no. 6, pp. 659–668.

    Article  CAS  Google Scholar 

  22. Koltovaya, N.A. and Kadyshevskaya, E.Yu., CDC28 Gene and Chekpoint Control in Yeast Saccharomyces, Dokl. Ros. Akad. Nauk, 1997, vol. 357, pp. 710–712.

    CAS  Google Scholar 

  23. McKee, R.H. and Lawrence, C.W., Genetic Analysis of γ-Ray Mutagenesis in Yeast: III. Double-Mutant Strains, Mutat. Res., 1980, vol. 70, pp. 37–48.

    PubMed  CAS  Google Scholar 

  24. Kadyk, L.C. and Hartwell, L.H., Sister Chromatids Are Preferred over Homologs as Substrates for Recombinational Repair in Saccharomyces cerevisiae, Genetics, 1992, vol. 132, pp. 387–402.

    PubMed  CAS  Google Scholar 

  25. Elledge, S.J., Cell Cycle Checkpoints: Preventing an Identity Crisis, Science, 1996, vol. 274, pp. 1664–1672.

    Article  PubMed  CAS  Google Scholar 

  26. Game, J.C., Birrell, G.W., Brown, J.A., et al., Use of a Genome-Wide Approach to Identify New Genes That Control Resistance of Saccharomyces cerevisiae to Ionizing Radiation, Radiation Res., 2003, vol. 160, pp. 14–24.

    Article  PubMed  CAS  Google Scholar 

  27. Aboussekhra, A., Chanet, R., Zgaga, Z., et al., RADH, a Gene of Saccharomyces cerevisiae Encoding a Putative DNA Helicase Involved in DNA Repair: Characteristics of radH Mutants and Sequence of the Gene, Nucleic Acids Res., 1989, vol. 17, pp. 7211–7219.

    Article  PubMed  CAS  Google Scholar 

  28. Aboussekhra, A., Chanet, R., Adjiri, A., and Fabre, F., Semidominant Suppressors of Srs2 Helicase Mutations of Saccharomyces cerevisiae Map in the RAD51 Gene, Whose Sequence Predicts a Protein with Similarities to Prokaryotic RecA Proteins, Mol. Cell Biol., 1992, vol. 12, pp. 3224–3234.

    PubMed  CAS  Google Scholar 

  29. Ubersax, J.A., Woodbury, E.L., Quang, P.N., et al., Targets of the Cyclin-Dependent Kinase Cdk1, Nature, 2003, vol. 425, pp. 859–864.

    Article  PubMed  CAS  Google Scholar 

  30. Boulton, S.J. and Jackson, S.P., Saccharomyces cerevisiae Ku70 Potentiates Illigitimate DNA Double-Strand Break Repair and Serves as a Barrier to Error-Prone DNA Repair Pathways, EMBO J., 1996, vol. 15, pp. 5093–5103.

    PubMed  CAS  Google Scholar 

  31. Boulton, S.J. and Jackson, S.P., Identification of a Saccharomyces cerevisiae Ku80 Homologue: Roles in DNA Double-Strand Break Rejoining and in Telomeric Maintenance, Nucleic Acids Res., 1996, vol. 24, pp. 4639–4648.

    Article  PubMed  CAS  Google Scholar 

  32. Tsukamoto, Y., Kato, J.-I., and Ikeda, H., Silencing Factors Participate in DNA Repair and Recombination in Saccharomyces cerevisiae, Nature, 1997, vol. 388, pp. 900–903.

    Article  PubMed  CAS  Google Scholar 

  33. Koltovaya, N.A. and Devin, A.B., Yeast Genes Involved in Both Cell Cycle Regulation at Checkpoints and Maintenance of Various Genetic Structures, Biochem. Soc. Trans., 1996, vol. 24, p. 516.

    Google Scholar 

  34. De la Torre-Ruiz, M.A. and Lowndes, N.F., DUN1 Defines One Branch Downstream of RAD53 for Transcription and DNA Damage Repair in Saccharomyces cerevisiae, FEBS Lett., 2000, vol. 485, pp. 205–206.

    Article  PubMed  Google Scholar 

  35. Glaser, V.M., Glasunov, A.V., Tevzadze, G.G., et al., Genetic Control of Plasmid DNA Double-Strand Gap Repair in Yeast Saccharomyces cerevisiae, Curr. Genet., 1990, vol. 18, pp. 1–5.

    Article  PubMed  CAS  Google Scholar 

  36. Ira, G., Pellicioli, A., Balijja, A., et al., DNA End Resection, Homologous Recombination and DNA Damage Checkpoint Activation Require CDK1, Nature, 2004, vol. 431, pp. 1011–1017.

    Article  PubMed  CAS  Google Scholar 

  37. Grandin, N. and Charbonneau, M., Mitotic Cyclins Regulate Telomeric Recombination in Telomerase-Deficient Yeast Cells, Mol. Cell. Biol., 2003, vol. 23, pp. 9162–9177.

    Article  PubMed  CAS  Google Scholar 

  38. Aylon, Y. and Kupiec, M., Cell Cycle-Dependent Regulation of Double-Strand Break Repair, Cell Cycle, 2005, vol. 4, e61–e63.

    Google Scholar 

  39. Liberi, G., Chiolo, I., Pellicioli, A., et al., Srs2 DNA Helicase Is Involved in Checkpoint Response and Its Regulation Requires a Functional Mec1-Dependent Pathway and Cdk1 Activity, EMBO J., 2000, vol. 19, pp. 5027–5038.

    Article  PubMed  CAS  Google Scholar 

  40. Chiolo, I., Carotenuto, W., Maffioletti, G., et al., Srs2 and Sgs1 DNA Helicases Associate with Mre11 in Different Subcomplexes Following Checkpoint Activation and CDK1-Mediated Srs2 Phosphorylation, Mol. Cell. Biol., 2005, vol. 25, pp. 5738–5751.

    Article  PubMed  CAS  Google Scholar 

  41. Uetz, P., Giot, L., Cagney, G., et al., A Comprehensive Analysis of Protein-Protein Interactions in Saccharomyces cerevisiae, Nature, 2000, vol. 403, pp. 623–627.

    Article  PubMed  CAS  Google Scholar 

  42. Clerici, M., Baldo, V., Mantiero, D., et al., A Tel1/MRX-Dependent Checkpoint Inhibits the Methaphase-to-Anaphase Transition after UV Irradiation in the Absence of Mec1, Mol. Cell. Biol., 2004, vol. 24, pp. 10126–10144.

    Article  PubMed  CAS  Google Scholar 

  43. Astrom, S.U., Okamura, S.M., and Rine, J., Yeast Cell-Type Regulation of DNA Repair, Nature, 1999, vol. 397, no. 6717, p. 310.

    Article  PubMed  CAS  Google Scholar 

  44. Lee, S.E., Paques, F., Sylvan, J., and Haber, J.E., Role of Yeast SIR Genes and Mating Type in Channeling Double-Strand Breaks to Homologous and Nonhomologous Recombination Pathways, Curr. Biol., 1999, vol. 9, pp. 767–770.

    Article  PubMed  CAS  Google Scholar 

  45. Tamburini, B.A. and Tyler, J.K., Localized Histone Acetylation and Deacetylation Triggered by the Homologous Recombination Pathway of Double-Strand DNA Repair, Mol. Cell. Biol., 2005, vol. 25, pp. 4903–4913.

    Article  PubMed  CAS  Google Scholar 

  46. Clikeman, J., Khalsa, G., Barton, S., and Nickoloff, J., Homologous Recombinational Repair of Double-Strand Breaks in Yeast Is Enhanced by MAT Heterozygosity Through yKU-Dependent and-Independent Mechanisms, Genetics, 2001, vol. 157, pp. 579–589.

    PubMed  CAS  Google Scholar 

  47. Bird, A.W., Yu, D.Y., Pray-Grant, M.G., et al., Acetylation of Histone H4 by Esa1 Is Required for DNA Double-Strand Break Repair, Nature, 2002, vol. 419, pp. 411–415.

    Article  PubMed  CAS  Google Scholar 

  48. Qin, S. and Parthun, M.R., Histone H3 and the Histone Acetyltransferase Hat1p Contribute to DNA Double-Strand Break Repair, Mol. Cell. Biol., 2002, vol. 22, pp. 8353–8365.

    Article  PubMed  CAS  Google Scholar 

  49. Choy, J.S. and Kron, S.J., NuA4 Subunit Yng2 Function in Intra-S-Phase DNA Damage Response, Mol. Cell. Biol., 2002, vol. 22, pp. 8215–8225.

    Article  PubMed  CAS  Google Scholar 

  50. Barlev, N.A., Poltoratsky, V., Owen-Hughes, T., et al., Repression of GCN5 Histone Acetyltransferase Activity via Bromodomain-Mediated Binding and Phosphorylation by the Ku/DNA-PK Complex, Mol. Cell. Biol., 1998, vol. 18, pp. 1349–1358.

    PubMed  CAS  Google Scholar 

  51. Barlev, N.A., Liu, L., Chehab, N.H., et al., Acetylation of p53 Activates Transcription through Recruitment of Coactivators/Histone Acetytransferases, Mol. Cell, 2001, vol. 8, pp. 1243–1254.

    Article  PubMed  CAS  Google Scholar 

  52. Luo, J., Nikolaev, A.Y., Imai, S., et al., Negative Control of p53 by Sir2 Promotes Cell Survival under Stress, Cell, 2001, vol. 107, pp. 137–148.

    Article  PubMed  CAS  Google Scholar 

  53. Vaziri, H., Dessain, S.K., Ng, Eaton.E., et al., hSIR2 (SIRT1) Functions as an NAD-Dependent p53 Deacetylase, Cell, 2001, vol. 107, pp. 149–159.

    Article  PubMed  CAS  Google Scholar 

  54. Kondo, T., Matsumoto, K., and Sugimoto, K., Role of a Complex Containing Rad17, Mec3, and Ddc1 in the Yeast DNA Damage Checkpoint Pathway, Mol. Cell. Biol., 1999, vol. 19, pp. 1136–1143.

    PubMed  CAS  Google Scholar 

  55. Naiki, T., Kondo, T., Nakada, D., et al., Chl12 (Ctf18) Forms a Novel Replication Factor C-Related Complex and Functions Redundantly with Rad24 in the DNA Replication Checkpoint Pathway, Mol. Cell. Biol., 2001, vol. 21, pp. 5838–5845.

    Article  PubMed  CAS  Google Scholar 

  56. Koltovaya, N.A. and Kadyshevskaya, E.Yu., Checkpoint Control in Yeast Saccharomyces cerevisiae in “Problemy radiatsionnoi genetiki na rubezhe vekov” (Problems of Radiation Genetics at the Turn of Centuries), Proc. Int. Conf., Moscow, 2000, pp. 130–131.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Koltovaya.

Additional information

Original Russian Text © N.A. Koltovaya, Yu.V. Nikulushkina, E.Yu. Kadyshevskaya, M.P. Roshina, A.B. Devin, 2008, published in Genetika, 2008, Vol. 44, No. 8, pp. 1045–1055.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koltovaya, N.A., Nikulushkina, Y.V., Kadyshevskaya, E.Y. et al. Interaction between checkpoint genes RAD9, RAD17, RAD24, RAD53, and genes SRM5/CDC28, SRM8/NET1, and SRM12/HFI1 involved in the determination of yeast Saccharomyces cerevisiae sensitivity to ionizing radiation. Russ J Genet 44, 909–918 (2008). https://doi.org/10.1134/S1022795408080048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795408080048

Keywords

Navigation