Abstract
Intraspecific and interspecific nucleotide sequence variations of the mtDNA control region (D-loop) were studied with mtDNAs isolated from tissue specimens of more than 1400 sturgeons of nine species: Russian sturgeon Acipenser gueldenstaedtii, Persian sturgeon A. persicus, Siberian sturgeon A. baerii, Amur sturgeon A. schrenkii, Fringebarbel sturgeon A. nudiventris, sterlet A. ruthenus, stellate sturgeon A. stellatus, beluga Huso huso, and kaluga H. dauricus. The results were used to analyze the interspecific variation of the mtDNA control region in the given set of species and to develop a test system of ten species-specific primers, which allowed species identification from noninvasive tissue samples, spawn, and food products of eight species. The system proved suitable for multiplex PCR. A method was developed for the first time to reliably differentiate the A. baerii mitotype and the baerii-like mitotype of A. gueldenstaedtii. It was found that, although genetically separate, A. gueldenstaedtii and A. persicus are relatively young species and have common mitochondrial haplotypes, precluding their identification via mtDNA analysis alone. To develop a system for species identification of A. gueldenstaedtii and A. persicus, it is necessary to study the polymorphism of nuclear markers.
This is a preview of subscription content, access via your institution.
References
Birstein, V.J, Bemis, W.E, and Waldman, J, The Threatened Status of Acipenseriform Fishes: A Summary, Sturgeon Biodiversity and Conservation, Birstein, V.J., Bemis, W.E., and Waldman, J., Eds., Dordrecht: Kluwer, 1997, pp. 427–435.
Raymakers, C. and Hoover, C., Acipenseriformes: CITES Implementation from Range States to Consumer Countries, J. Appl. Ichthyol., 2002, vol. 18, nos. 4–6, pp. 629–638.
Raymakers, C., CITES, the Convention on International Trade in Endangered Species of Wild Fauna and Flora: Its Role in the Conservation of Acipenseriformes, J. Appl. Ichthyol., 2006, vol. 22,suppl. 1, pp. 53–65.
Vaisman, A. and Raymakers, C., Legal Status of Sturgeon Fishery in the Russian Federation, Traffic Bull., 2001, vol. 19, pp. 33–44.
Vecsei, P., Charette, R., Hochleithner, M., et al., Guide to the Identification of Sturgeon and Paddlefish Species Controlled under the Convention on International Trade in Endangered Species of Wild Fauna and Flora, CITES, 2001.
Debus, L., Winkler, M., and Billard, R., Structure of Micropyle Surface on Oocytes and Caviar Grains in Sturgeons, Int. Rev. Hydrobiol., 2002, vol. 87, nos. 5–6, pp. 585–603.
Chen, I.-C., Chapman, F.A., Wei, C.I., et al., Preliminary Studies on SDS-PAGE and Isoelectric Focusing Identification of Sturgeon Sources of Caviar, J. Food Sci., 1998, vol. 61, pp. 533–359.
Rehbein, H., Fischartbestimmung von Caviar durch Protein-und DNA-Analyse, Inf. Fischwirtschaft, 1997, vol. 44, pp. 27–30.
Ivanenkov, V.V. and Kamshilin, I.N., On the Possibility of Using Albumin Fractions as Genetic Markers for Population Studies in Sturgeons, Vopr. Ikhtiol., 1991, vol. 31, pp. 232–237.
Bartlett, S.E. and Davidson, W.S., FINS (Forensically Informative Nucleotide Sequences): A Procedure for Identifying the Animal Origin of Biological Specimens, BioTechniques, 1992, vol. 12, pp. 408–411.
DeSalle, R. and Birstein, V.J., PCR Identification of Black Caviar, Nature, 1996, vol. 381, pp. 197–198.
Birstein, V.J., Doukakis, P., Sorkin, B., and DeSalle, R., Population Aggregation Analysis of Three Caviar-Producing Species of Sturgeons and Implications for the Species Identification of Black Caviar, Conservation Biol., 1998, vol. 12, no. 4, pp. 766–775.
Birstein, V.J., Doukakis, P., and DeSalle, R., Polyphyly of mtDNA Lineages in the Russian Sturgeon, Acipenser gueldenstaedtii: Forensic and Evolutionary Implications, Conservation Genet., 2000, vol. 1, no. 1, pp. 81–88.
Ludwig, A., Debus, L., and Jenneckens, I., A Molecular Approach to Control the International Trade in Black Caviar, Int. Rev. Hydrobiol., 2002, vol. 87, nos. 5–6, pp. 661–674.
Wuertz, S., M. Belay, M., and Kirschbaum, F. On the Risk of Criminal Manipulation in Caviar Trade by Intended Contamination of Caviar with PCR Products, Aquaculture, 2007, vol. 269, nos. 1–4, pp. 130–134.
Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1989.
Aljanabi, S.M. and Martinez, I., Universal and Rapid Salt-Extraction of High Quality Gnomic DNA for PCR-Based Techniques, Nucleic Acids Res., 1997, vol. 25, no. 20, pp. 4692–4693.
Ludwig, A., May, B., Debus, L., and Jenneckens, I., Heteroplasmy in the mtDNA Control Region of Sturgeon (Acipenser, Huso and Scaphirhynchus), Genetics, 2000, vol. 156, no. 4, pp. 1933–1947.
Buroker, N.E., Brown, J.R., Gilbert, T.A., et al., Length Heteroplasmy of Sturgeon Mitochondrial DNA: An Illegitimate Elongation Model, Genetics, 1990, vol. 124, no. 1, pp. 157–163.
Birstein, V.J., Hanner, R, and DeSalle, R., Phylogeny of the Acipenseriformes: Cytogenetic and Molecular Approaches, Sturgeon Biodiversity and Conservation, Birstein, V.J., Bemis, W.E., and Waldman, J., Eds., Dordrecht: Kluwer, 1997, pp. 127–155.
Jenneckens, I., Meyer, J.-N., Debus, L., et al., Evidence of Mitochondrial DNA Clones of Siberian Sturgeon, Acipenser baerii, within Russian Sturgeon, Acipenser gueldenstaedtii, Caught in the River Volga, Ecol. Lett., 2000, vol. 3, no. 6, pp. 503–508.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © N.S. Mugue, A.E. Barmintseva, S.M. Rastorguev, V.N. Mugue, V.A. Barmintsev, 2008, published in Genetika, 2008, Vol. 44, No. 7, pp. 913–920.
Rights and permissions
About this article
Cite this article
Mugue, N.S., Barmintseva, A.E., Rastorguev, S.M. et al. Polymorphism of the mitochondrial DNA control region in eight sturgeon species and development of a system for DNA-based species identification. Russ J Genet 44, 793–798 (2008). https://doi.org/10.1134/S1022795408070065
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1022795408070065
Keywords
- Control Region
- Control Region Sequence
- Siberian Sturgeon
- CytB Gene
- Russian Sturgeon