Skip to main content
Log in

The relationships among the species of the Drosophila virilis group inferred from the gene Ras1 sequences

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Comparative analysis of a group of closely related Drosophila species (D. virilis, D. lummei, D. novamexicana, D. americana texana, D. flavomontana, D. montana, D. borealis, D. lacicola, D. littoralis, D. kanekoi, and D. ezoana) was conducted based on an incomplete sequence of gene Ras1. The pattern of the relationships among the species corresponded to that expected from analysis of morphological and cytogenetic characters. Statistical data favoring neutrality of the substitutions examined in the Ras1 gene are presented. This character of the gene Ras1 evolution confers more reliability to reconstruction of phylogenetic relationships among closely related species. The resultant tree for main phylads of the group is as follows: D. virilis (D. lummei, D. montana, D. ezoana).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rasnitsyn, A.P., Classic and Nonclassic Systematics: Another View, Zh. Obshch. Biol., 2006, vol. 67, no. 5, pp. 385–388.

    CAS  PubMed  Google Scholar 

  2. Spicer, G.S., Molecular Evolution and Phylogeny of the Drosophila virilis Species Group As Inferred by Two-Dimensional Electrophoresis, J. Mol. Evol., 1991, vol. 33, no. 4, pp. 379–394.

    Article  CAS  PubMed  Google Scholar 

  3. Spicer, G.S. and Bell, C.D., Molecular Phylogeny of the Drosophila virilis Species Group (Diptera: Drosophilidae) Inferred from Mitochondrial 12S and 16S Ribosomal RNA Genes, Ann. Entomol. Soc. Am., 2002, vol. 95, no. 2, pp. 156–161.

    Article  CAS  Google Scholar 

  4. Civetta, A. and Singh, R.S., High Divergence of Reproductive Tract Proteins and Their Association with Postzygotic Reproductive Isolation in Drosophila melanogaster and Drosophila virilis Group Species, J. Mol. Evol., 1995, vol. 41, no. 6, pp. 1085–1095.

    Article  CAS  PubMed  Google Scholar 

  5. Caletka, B.C. and McAllister, B.F., A Genealogical View of Chromosomal Evolution and Species Delimitation in the Drosophila virilis Species Subgroup, Mol. Phylogenet. Evol., 2004, vol. 33, no. 3, pp. 664–670.

    Article  CAS  PubMed  Google Scholar 

  6. Kulikov, A.M., Mel’nikov, A.I., Gornostaev, N.G., et al., Morphometric Analysis of Male Genitalia in Sibling Species of Drosophila virilis Sturt., Russ. J. Genet., 2004, vol. 40, no. 2, pp. 125–138.

    Article  CAS  Google Scholar 

  7. Sorokina, S.Yu., Mugue, N.S., Andrianov, B.V., and Mitrofanov, V.G., Variation of the 3′-Terminal Fragment of 16S rRNA Gene in Closely Related Species of Drosophila virilis Group, Russ. J. Genet., 2005, vol. 41, no. 8, pp. 853–858.

    Article  CAS  Google Scholar 

  8. Patterson, J.T. and Stone, W.S., Evolution in the Genus Drosophila, New York: Macmillan, 1952.

    Google Scholar 

  9. Throckmorton, L.H, The virilis Species Group, in The Genetics and Biology of Drosophila, Ashburner, M. and Novitsky, E., Eds., London: Academic, 1982, pp. 227–296.

    Google Scholar 

  10. Tominaga, H. and Narise, S., Sequence Evolution of the Gpdh Gene in the Drosophila virilis Species Group, Genetics, 1995, vol. 96, no. 3, pp. 293–302.

    CAS  Google Scholar 

  11. Cohen, M.J., Evolution of 5S Ribosomal RNA Genes in the Chromosomes of the virilis Group of Drosophila, Chromosoma, 1976, vol. 55, no. 4, pp. 359–371.

    Article  CAS  PubMed  Google Scholar 

  12. Nurminsky, D.I., Moriyama, E.N., Lozovskaya, E.R., and Hartl, D.L., Molecular Phylogeny and Genome Evolution in the Drosophila virilis Species Group: Duplications of the Alcohol Dehydrogenase Gene, Mol. Biol. Evol., 1996, vol. 13, no. 1, pp. 132–149.

    CAS  PubMed  Google Scholar 

  13. Gasperini, R. and Gibson, G., Absence of Protein Polymorphism in the Ras Genes of Drosophila melanogaster, J. Mol. Evol., 1999, vol. 49, no. 5, pp. 583–590.

    Article  CAS  PubMed  Google Scholar 

  14. Gloor, G.B., Preston, C.R., Johnson-Schlitz, D.M., et al., Type I Repressors of P Element Mobility, Genetics, 1993, vol. 135, pp. 81–95.

    CAS  PubMed  Google Scholar 

  15. Welsh, J. and McClelland, M., Fingerprinting Genomes Using PCR with Arbitrary Primers, Nucleic Acids Res., 1990, vol. 18, no. 24, pp. 7213–7218.

    Article  CAS  PubMed  Google Scholar 

  16. Kumar, S., Tamura, K., and Nei, M., MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment, Briefings Bioinf., 2004, no. 5, pp. 150–163.

  17. Gu, X. and Zhang, J.J., A Simple Method for Estimating the Parameter of Substitution Rate Variation among Sites, Mol. Biol. Evol., 1997, no. 11, pp. 1106–1113.

  18. Clement, M., Posada, D., and Crandall, K.A., TCS: A Computer Program to Estimate Gene Genealogies, Mol. Ecol., 2000, vol. 9, no. 10, pp. 1657–1660.

    Article  CAS  PubMed  Google Scholar 

  19. Takezaki, N., Rzhetsky, A., and Nei, M., Phylogenetic Tests of the Molecular Clock and Linearized Trees, Mol. Biol. Evol., 1995, vol. 12, no. 5, pp. 823–833.

    CAS  PubMed  Google Scholar 

  20. UCSC Genome Bioinformatics—http://genomewiki.ucsc.edu.

  21. Ohta, T. and Kimura, M., On the Constancy of the Evolutionary Rate of Cistrons, J. Mol. Evol., 1971, vol. 1, no. 1, pp. 18–25.

    Article  CAS  Google Scholar 

  22. Valencia, A., Chardin, P., Wittinghofer, A., and Sander, C., The Ras Protein Family: Evolutionary Tree and Role of Conserved Amino Acids, Biochemistry, 1991, vol. 30, no. 19, pp. 4637–4648.

    Article  CAS  PubMed  Google Scholar 

  23. Neuman-Silberberg, F.S., Schejter, E., Hoffmann, F.M., and Shilo, B.Z., The Drosophila Ras Oncogenes: Structure and Nucleotide Sequence, Cell, 1984, vol. 37, no. 3, pp. 1027–1033.

    Article  CAS  PubMed  Google Scholar 

  24. Brock, H.W., Sequence and Genomic Structure of Ras Homologues Dmras85D and Dmras64B of Drosophila melanogaster, Gene, 1987, vol. 51, nos. 2–3, pp. 129–137.

    Article  CAS  PubMed  Google Scholar 

  25. Riley, R.M., Jin, W., and Gibson, G., Contrasting Selection Pressures on Components of the Ras-Mediated Signal Transduction Pathway in Drosophila, Mol. Ecol., 2003, vol. 12, no. 5, pp. 1315–1323.

    Article  CAS  PubMed  Google Scholar 

  26. Bergman, C.M., Pfeiffer, B.D., Limas, D.E., et al., Assessing the Impact of Comparative Genomic Sequence Data on the Functional Annotation of the Drosophila Genome, Genome Biol., 2002, vol. 3, no. 12, research 0086.1-0086.20.

  27. Drton, M., Eriksson, N., and Leung, G., Ultra-Conserved Elements in Vertebrate and Fly Genomes, Algebraic Statistics for Computational Biology, Patcher, L. and Sturmfels, B., Eds., Cambridge: Cambridge Univ. Press, 2005, pp. 387–402.

    Google Scholar 

  28. Grantham, R., Gautier, G., Gouy, M., et al., Codon Catalog Usage and the Genome Hypothesis, Nucleic Acids Res., 1980, vol. 8, no. 1, pp. r49–r62.

    Article  CAS  PubMed  Google Scholar 

  29. Filipski, J., Evolution of DNA Sequence: Contributions of Mutation and Selection to the Origin of Chromosomal Compartments, Advances in Mutagenesis Research, Obe, G., Ed., Berlin: Springer Verlag, 1990, vol. 2, pp. 1–54.

    Google Scholar 

  30. Forsdyke, D.R., A Stem-Loop “Kissing” Model for the Initiation of Recombination and the Origin of Introns, Mol. Biol. Evol., 1995, vol. 12, no. 5, pp. 949–958.

    CAS  PubMed  Google Scholar 

  31. Johnston, L.A. and Gallant, P., Control of Growth and Organ Size in Drosophila, BioEssays, 2002, vol. 24, no. 1, pp. 54–64.

    Article  CAS  PubMed  Google Scholar 

  32. Caldwell, P.E., Walkiewicz, M., and Stern, M., Ras Activity in the Drosophila Prothoracic Gland Regulates Body Size and Developmental Rate via Ecdysone Release, Curr. Biol., 2005, vol. 15, no. 20, pp. 1785–1795.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, B.C., Park, J., Watabe, H.A., et al., Molecular Phylogeny of the Drosophila virilis Section (Diptera: Drosophilidae) Based on Mitochondrial and Nuclear Sequences, Mol. Phylogenet. Evol., 2006, vol. 40, no. 2, pp. 484–500.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kulikov.

Additional information

Original Russian Text © A.I. Chekunova, A.M. Kulikov, S.S. Mikhailovskii, O.E. Lazebny, I.V. Lazebnaya, V.G. Mitrofanov, 2008, published in Genetika, 2008, Vol. 44, No. 3, pp. 336–345.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chekunova, A.I., Kulikov, A.M., Mikhailovskii, S.S. et al. The relationships among the species of the Drosophila virilis group inferred from the gene Ras1 sequences. Russ J Genet 44, 286–294 (2008). https://doi.org/10.1134/S1022795408030071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795408030071

Keywords

Navigation