Skip to main content
Log in

Adaptive significance of amylase polymorphism in Drosophila: Effect of substrates with different carbohydrate composition on some life-history traits of Drosophila subobscura

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The Amy locus polymorphism of Drosophila subobscura is used as a model system for an experimental population genetic study of adaptive significance of α-amylase activity on substrates of different carbohydrate compositions. So far, fitness components have not commonly been included in ecological-genetic studies of α-amylase polymorphism in this species. In the present paper, fitness components are analyzed in relation to different amylase activities in D. subobscura individuals homozygous for the “slow” and the “fast” Amy allele, associated with substrates of different carbohydrate compositions. The results indicate a significant effect of substrate carbohydrate composition on fitness components of the genotypes homozygous for S or F Amy allele in D. subobscura through their enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Price, T. and Lange, T., Evolution of Correlated Characters, Trends Ecol. Evol., 1992, vol. 7, pp. 307–310.

    Article  Google Scholar 

  2. Armbruster, W.S. and Schwaegerle, K.E., Causes of Covariation of Phenotypic Traits among Populations, J. Evol. Biol., 1996, vol. 9, pp. 261–176.

    Article  Google Scholar 

  3. Felsenstein, J., Phylogenies and Quantitative Characters, Annu. Rev. Ecol. Syst., 1988, vol. 19, pp. 445–471.

    Article  Google Scholar 

  4. Milanovic, M., and Andjelkovic, M., Biochemical and Genetic Diversity of Alpha-Amylase in Drosophila, Arch. Biol. Sci., 1993, vol. 45, nos. 3–4, pp. 63–82.

    Google Scholar 

  5. Clark, A.G., Genetic Components of Variation in Energy Storage in Drosophila melanogaster, Evolution, 1990, vol. 44, pp. 637–650.

    Article  Google Scholar 

  6. Doane, W.W., Amylase Variants in Drosophila melanogaster: Linkaqe Studies and Characterisation of Enzyme Extract, J. Exp. Zool., 1969, vol. 171, pp. 321–324.

    Article  CAS  Google Scholar 

  7. Powell, J.R. and Andjelkovic, M., Population Genetics of Drosophila Amylase: IV. Selection in Laboratory Populations Maintained on Different Carbohydrates, Genetics, 1983, vol. 103, pp. 675–689.

    CAS  PubMed  Google Scholar 

  8. Powell, J.R. and Amato, D.G., Population Genetics of Drosophila Amylase, Genetics, 1984, vol. 106, pp. 625–629.

    CAS  PubMed  Google Scholar 

  9. Tejima, T. and Ohba, S., Genetic Regulation of Amylase Activity in Drosophila virilis: I. Activity Variation among Laboratory Strains, Jap. J. Genet., 1981, vol. 56, pp. 457–468.

    Article  Google Scholar 

  10. Stoiljković, V., Milanović, M., Milošević, M., et al., Adaptive Significance of Amylase Polymorphism in Drosophila: X. Analysis of Alpha-Amylase Activity of Two Amylase Variants in Individual Drosophila subobscura Flies, Jap. J. Genet., 1995, vol. 70, no. 4, pp. 487–495.

    Article  Google Scholar 

  11. Inomata, N., Kanda, K., Cariou, M.L., et al., Evolution of the Response Pattern to Dietary Carbohydrates and the Developmental Differentiation of Gene Expression of α-Amylase in Drosophila, J. Mol. Evol., 1995, vol. 41, pp. 1076–1084.

    Article  CAS  PubMed  Google Scholar 

  12. Stamenković-Radak, M., Milanović, M., Savić, T., and Andjelković, M., Adaptive Significance of Amylase Polymorphism in Drosophila: XIII. Old World obscura Species Subgroup Divergence According to Biochemical Properties of α-Amylase, Genes Genet. Syst., 2002, vol. 78, pp. 23–28.

    Article  Google Scholar 

  13. Yamazaki, T. and Matsuo, Y., Genetic Analysis of Natural Populations of Drosophila melanogaster in Japan: III. Genetic Variability of Inducing Factors of Amylase and Fitness, Genetics, 1984, vol. 108, pp. 223–235.

    CAS  PubMed  Google Scholar 

  14. Fujimoto, J., Kanou, C., Eguchi, Y., and Matsuo, Y., Adaptation to a Starch Environment and Regulation of α-Amylase in Drosophila, Biochem. Genet., 1999, vol. 37, pp. 53–62.

    Article  CAS  PubMed  Google Scholar 

  15. Doane, W.W., Quantitation of Amylases in Drosophila Separated by Acrylamide Gel Electrophoresis, J. Exp. Zool., 1967, vol. 164, pp. 363–370.

    Article  CAS  PubMed  Google Scholar 

  16. Bernfeld, P., Amylases, Methods in Enzymology, Colowick, P.S. and Caplan, O.N., Eds., New York: Academic, 1955, vol. 1, pp. 149–158.

    Chapter  Google Scholar 

  17. Van Delden, W., Kamping, A., and Boerema, A.C., The Alcohol Dehydrogenase Polymorphism in Populations of Drosophila melanogaster: I. Selection in Different Environments, Genetics, 1978, vol. 90, pp. 161–191.

    PubMed  Google Scholar 

  18. Daly, K. and Clarke, B., Selection Associated with the Alcohol Dehydrogenase Locus in Drosophila melanogaster: Differential Survival of Adults Maintained on Low Concentrations of Ethanol, Heredity, 1981, vol. 46, pp. 219–226.

    Article  CAS  PubMed  Google Scholar 

  19. Dorado, G. and Barbancjo, M., Differential Responses in Drosophila melanogaster to Environmental Ethanol: Modification of Fitness Components, Heredity, 1984, vol. 53, pp. 309–320.

    Article  Google Scholar 

  20. Goto, H., Szmidt, A., Yamazaki, T., and Inomata, N., Effect of Nucleotide Polymorphism in cis-Regulatory and Coding Regions on Amylase Activity and Fitness in Drosophila melanogaster, Heredity, 2005, vol. 95, pp. 369–376.

    Article  CAS  PubMed  Google Scholar 

  21. Hoorn, A.J.W. and Scharlo, W., The Functional Significance of Amylase Polymorphism in Drosophila melanogaster: V. The Effect of Food Components on Amylase and α-Glucosidase Activity, Genetica, 1978, vol. 49, pp. 181–187.

    Article  CAS  Google Scholar 

  22. Hoorn, A.J.W., Van Damme, J., and Scharloo, W., The Functional Significance of Amylase Polymorphism in Drosophila melanogaster: IV. Starch and Maltose as Food Components, Neth. J. Zool., 1979, vol. 29, pp. 1–8.

    Article  CAS  Google Scholar 

  23. Eguchi, Y. and Matsuo, Y., Divergence of the Regulation of α-Amylase Activity in Drosophila melanogaster, Drosophila funebris, and Drosophila saltans, Biochem. Genet., 1999, vol. 37, pp. 41–52.

    Article  CAS  PubMed  Google Scholar 

  24. Hoorn, A.J.W. and Scharloo, W., The Functional Significance of Amylase Polymorphism in Drosophila melanogaster: VI. Duration of Development and Amylase Activity in Larvae when Starch is a Limiting Factor, Genetica, 1981, vol. 55, pp. 195–201.

    Article  Google Scholar 

  25. Hoorn, A.J.W. and Scharloo, W., The Functional Significance of Amylase Polymorphism in Drosophila melanogaster: III. Ontogeny of Amylase and Some α-Glucosidases, Biochem. Genet., 1980, vol. 18, pp. 51–63.

    Article  CAS  PubMed  Google Scholar 

  26. Hickey, D.A. and Benkel, B., Regulation of Amylase Activity in Drosophila melanogaster: Effects of Dietary Carbohydrate, Biochem. Genet., 1982, vol. 20, pp. 1117–1129.

    Article  CAS  PubMed  Google Scholar 

  27. Doane, W.W., Treat-Clements, L.G., Gemmill, R.M., et al., Genetic Mechanism for Tissue-Specific Control of Alpha-Amylase Expression in Drosophila melanogaster, Isozymes: Current Topics in Biological and Medical Research, Rattzzi, M.C., Scandalios, J.G., and Whitt, G.S., Eds., New York: Liss, 1983, vol. 9, pp. 69–90.

    Google Scholar 

  28. Gibson, J., Enzyme Flexibility, in Drosophila melanogaster, Nature, 1970, vol. 227, pp. 959–960.

    CAS  Google Scholar 

  29. De Jong, G. and Scharloo, W., Environmental Determination of Selective Significance or Neutrality of Amylase Variants in Drosophila melanogaster, Genetics, 1976, vol. 84, pp. 77–94.

    PubMed  Google Scholar 

  30. Marinković, D., Milošević, M., and Milanović, M., Enzyme Activity Variation and Duration of Preadult Development in Drosophila melanogaster and Drosophila subobscura, Arch. Biol. Sci., 1984, vol. 36, pp. 13–24.

    Google Scholar 

  31. Avise, C.J. and McDonald, F.J., Enzyme Changes during Development of Holometabolic and Hemimetabolic Insects, Comp. Biochem. Physiol., 1976, vol. 53, pp. 393–397.

    CAS  Google Scholar 

  32. Marinković, D. and Wattiaux, M.J., Genetic Loads Affecting Longevity in Natural Populations of Drosophila pseudoobscura, Nature, 1967, vol. 216, pp. 170–171.

    Article  PubMed  Google Scholar 

  33. Burcombe, V.J. and Hoollingsworth, J.M., The Relationship between Developmental Temperature and Longevity in Drosophila, Gerontologia, 1970, vol. 16, pp. 172–181.

    Article  CAS  PubMed  Google Scholar 

  34. Lints, A.F. and Lints, V.C., Influence of Pre-Imaginal Environment on Fecundity and Aging in Drosophila melanogaster Hybrids: I. Pre-Imaginal Population Density, Exp. Gerontol., 1969, vol. 4, pp. 231–244.

    Article  CAS  PubMed  Google Scholar 

  35. Parsons, A.P., Stanley, M.S., and Spence, E.G., Environmental Ethanol at Low Concentration: Longevity and Development in the Sibling Species Drosophila melanogaster and Drosophila simulans, Aust. J. Zool., 1979, vol. 27, pp. 747–754.

    Article  CAS  Google Scholar 

  36. Shmit, Z., Rizova, M., Mihajlović, N., et al., Contribution to the Evolutionary Theory of Aging: III. Relationship between Duration of Preimaginal Development and Longevity in Drosophila melanogaster, Genetika, 1981, vol. 13, pp. 158–170.

    Google Scholar 

  37. Mayer, J.P. and Baker, T.G., Developmental Time and Longevity in Two Strains of Drosophila melanogaster in a Constant Low-Stress Environment, Mech. Age. Develop., 1984, vol. 26, pp. 288–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Savic.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savic, T., Milanovic, M., Stamenkovic-Radak, M. et al. Adaptive significance of amylase polymorphism in Drosophila: Effect of substrates with different carbohydrate composition on some life-history traits of Drosophila subobscura . Russ J Genet 44, 279–285 (2008). https://doi.org/10.1134/S102279540803006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279540803006X

Keywords

Navigation