Skip to main content
Log in

Genomic regulation of neural stem cells in mammals

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The evidence obtained in the last 15 years has shed new light on the functioning of the brain tissue in norm and pathology. It has been shown that proliferating stem cells exist in the adult brain. Under certain conditions, these cells can participate in posttraumatic repair, replacing perished cells. The involvement of stem cells in the development of malignant tumors have been established. Numerous genomic mechanisms of regulating self-renewal of neural stem cells, their proliferation and differentiation have been found. These findings open new avenues in studying brain functions and development. They are used for designing cardinally novel technologies for treating neurogenerative diseases and brain cancers. In this review, we present new evidence on the genomic mechanisms involved in governing the fate of neural stem cells in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maximov, A., Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Lutelemente in der embryonalen Entwicklung und im postfetalen Leben der Saugetiere, Folia Haematol., 1909, vol. 4, pp. 611–626.

    Google Scholar 

  2. Fridenstein, A.Ya. and Lalykina, K.S., Induktsiya kostnoi tkani i osteogennye kletki-predshestvenniki (The Induction of Bone Tissue and Osteogenic Precursors), Moscow: Meditsina, 1973.

    Google Scholar 

  3. Fridenshtein, A.Ya. and Luriya, E.A., Kletochnye osnovy krovetvornogo mikrookruzheniya (Cellular Basis of the Hematopoietic Microenvironment), Moscow: Meditsina, 1980.

    Google Scholar 

  4. Viktorov, I.V., Stem Cells of Mammalian Brain: Biology of the Stem Cells in Vivo and in Vitro, Izv. Akad. Nauk, Ser. Biol., 2001, no. 6, pp. 645–655.

  5. Korochkin, L.I., Gene Interactions in Development, Berlin: Springer-Verlag, 1981.

    Google Scholar 

  6. Hall, P.A. and Watt, F.M., Stem Cells: The Generation and Maintenance of Cellular Diversity, Development, 1989, vol. 106, pp. 619–633.

    CAS  PubMed  Google Scholar 

  7. Potten, C.S. and Loeffler, M., Stem Cells: Attributes, Cycles, Spirals, Pitfalls and Uncertainties: Lessons for and from the Crypt, Development, 1990, vol. 110, pp. 1001–1020.

    CAS  PubMed  Google Scholar 

  8. Aleksandrova, M.A., Revishchin, A.V., Poltavtseva, R.A., et al., Stem/Progenitor Cells Transplantation into the Brain of Adult Rats, Ontogenez, 2003, vol. 34, no. 3, pp. 167–173.

    CAS  PubMed  Google Scholar 

  9. Aleksandrova, M.A., Poltavtseva, R.A., Marei, M.V., et al., Transplantation of Cultured Human Stem/Progenitor Cells into the Rat Brain: Migration and Differentiation, Byull. Eksp. Biol. Med., 2001, vol. 132, no. 10, pp. 455–458.

    Google Scholar 

  10. Korochkin, L.I., Stem Cells, Ontogenez, 2003, vol. 34, no. 3, pp. 164–166.

    CAS  PubMed  Google Scholar 

  11. Vaccarino, F.M., Ganat, Y., Zhang, Y., and Zheng, W., Stem Cells in Neurodevelopment and Plasticity, Neuropsychopharmacology, 2001, vol. 25, pp. 805–815.

    Article  CAS  PubMed  Google Scholar 

  12. Leahy, A., Xiong, J.W., Kuhnert, F., and Stuhlmann, H., Use of Developmental Marker Genes to Define Temporal and Spatial Patterns of Differentiation during Embryoid Body Formation, J. Exptl. Zool., 1999, vol. 284, pp. 67–81.

    Article  CAS  Google Scholar 

  13. Tremain, N., Korkko, J., Ibberson, D., et al., MicroSAGE Analysis of 2.353 Expressed Genes in a Single Cell-Derived Colony of Undifferentiated Human Mesenchymal Stem Cells Reveals mRNAs of Multiple Cell Lineages, Stem Cells, 2001, vol. 19, pp. 408–418.

    Article  CAS  PubMed  Google Scholar 

  14. Kelly, D.L. and Rizzino, A., DNA Microarray Analyses of Genes Regulated during the Differentiation of Embryonic Stem Cells, Mol. Reprod. Dev., 2000, vol. 56, pp. 113–123.

    Article  CAS  PubMed  Google Scholar 

  15. Repin, V.S., Rzhaninova, A.A., and Shamenkov, D.A., Embrional’nye stvolovye kletki: fundamental’naya biologiya i meditsina (Embryonic Stem Cells: Fundamental Biology and Medicine), Moscow: ReMeteks, 2002.

    Google Scholar 

  16. Aleksandrova, M.A., Podgornyi, O.V., Poltavtseva, R.A, et al., Behavior and Differentiation of Human Neural Progenitor Cells in Pathological Rat Brain, Tsitologiya, 2003, vol. 45, no. 9, pp. 842–843.

    Google Scholar 

  17. Aleksandrova, M.A., Poltavtseva, R.A., Revishchin, A.V., et al., Development of Human Neural Progenitor Cells after Transplantation into Adult Rat Brains, Morfologiya, 2003, vol. 123, no. 3, pp. 17–20.

    CAS  Google Scholar 

  18. Aleksandrova, M.A., Podgornyi, O.V., Marei, M.V., et al., Characteristics of Human Neural Stem Cells in Vitro and after Transplantation in Rat Brain, Byul. Eksp. Biol. Med., 2005, vol. 139, no. 1, pp. 114–120.

    Article  CAS  Google Scholar 

  19. Aleksandrova, M.A., Saburina, I.N., Poltavtseva, R.A., et al., Behavior of Human Neural Progenitor Cells Transplanted to Rat Brain, Brain Res. Dev. Brain Res., 2002, vol. 134, pp. 143–148.

    Article  CAS  PubMed  Google Scholar 

  20. Pankratov, Y.V., Ivanov, A.I., Kolokoltsova, T.D., et al., Cell-Based Therapy of Chronic Degenerative Diseases of the Central Nervous System, Adv. Exptl. Med. Biol., 2003, vol. 534, pp. 97–105.

    Google Scholar 

  21. Snyder, E.Y., Yoon, C., Flax, J.D., and Macklis, J.D., Multipotent Neural Precursors Can Differentiate toward Replacement of Neurons Undergoing Targeted Apoptotic Degeneration in Adult Mouse Neocortex, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 11663–11668.

    Article  CAS  PubMed  Google Scholar 

  22. Korochkin, L.I. and Mikhailov, A.T., Vvedenie v neirogenetiku (Introduction to Neurogenetics), Moscow: Nauka, 2000.

    Google Scholar 

  23. Gershon, M.D., Genes and Lineages in the Formation of the Enteric Nervous System, Curr. Opin. Neurobiol., 1997, vol. 7, pp. 101–109.

    Article  CAS  PubMed  Google Scholar 

  24. Podgornaya, O.I., Voronin, A.P., Enukashvily, N.I., et al., Structure-Specific DNA-Binding Proteins as the Foundation for Three-Dimensional Chromatin Organization, Int. Rev. Cytol., 2003, vol. 224, pp. 227–296.

    Article  CAS  PubMed  Google Scholar 

  25. Renoncourt, Y., Carroll, P., Filippi, P., et al., Neurons Derived in Vitro from ES Cells Express Homeoproteins Characteristic of Motoneurons and Interneurons, Mech. Dev., 1998, vol. 79, pp. 185–197.

    Article  CAS  PubMed  Google Scholar 

  26. Davidson, E.H., Rast, J.P., Oliveri, P., et al., A Genomic Regulatory Network for Development, Science, 2002, vol. 295, pp. 1669–1678.

    Article  CAS  PubMed  Google Scholar 

  27. Tomooka, Y., Kitani, H., Jing, N., et al., Reconstruction of Neural Tube-Like Structures in Vitro from Primary Neural Precursor Cells, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 9683–9687.

    Article  CAS  PubMed  Google Scholar 

  28. Rzeczinski, S., Victorov, I.V., Lyjin, A.A., et al., Roller Culture of Free-Floating Retinal Slices: A New System of Organotypic Cultures of Adult Rat Retina, Ophthalmic. Res., 2006, vol. 38, pp. 263–269.

    Article  PubMed  Google Scholar 

  29. Geschwind, D.H., Ou, J., Easterday, M.C., et al., A Genetic Analysis of Neural Progenitor Differentiation, Neuron, 2001, vol. 29, pp. 325–339.

    Article  CAS  PubMed  Google Scholar 

  30. Easterday, M.C., Dougherty, J.D., Jackson, R.L., et al., Neural Progenitor Genes: Germinal Zone Expression and Analysis of Genetic Overlap in Stem Cell Populations, Dev. Biol., 2003, vol. 264, pp. 309–322.

    Article  CAS  PubMed  Google Scholar 

  31. Gurok, U., Steinhoff, C., Lipkowitz, B., et al., Gene Expression Changes in the Course of Neural Progenitor Cell Differentiation, J. Neurosci., 2004, vol. 24, pp. 5982–6002.

    Article  CAS  PubMed  Google Scholar 

  32. Mi, R., Luo, Y., Cai, J., et al., Immortalized Neural Stem Cells Differ from Nonimmortalized Cortical Neurospheres and Cerebellar Granule Cell Progenitors, Exp. Neurol., 2005, vol. 194, pp. 301–319.

    Article  CAS  PubMed  Google Scholar 

  33. Parker, M.A., Anderson, J.K., Corliss, D.A., et al., Expression Profile of an Operationally-Defined Neural Stem Cell Clone, Exp. Neurol., 2005, vol. 194, pp. 320–332.

    Article  CAS  PubMed  Google Scholar 

  34. Vescovi, A.L., Reynolds, B.A., Fraser, D.D., et al., BFGF Regulates the Proliferative Fate of Unipotent (Neuronal) and Bipotent (Neuronal/Astroglial) EGF-Generated CNS Progenitor Cells, Neuron, 1993, vol. 11, pp. 951–966.

    Article  CAS  PubMed  Google Scholar 

  35. Revishchin, A.V., Poltavtseva, R.A., Marei, M.V., et al., Structure of Cell Clusters Formed in Cultures of Dissociated Human Embryonic Brain, Byull. Eksp. Biol. Med., 2001, vol. 132, no. 9, pp. 285–289.

    Google Scholar 

  36. Weissman, I.L., Anderson, D.J., and Gage, F., Stem and Progenitor Cells: Origins, Phenotypes, Lineage Commitments, and Transdifferentiations, Annu. Rev. Cell Dev. Biol., 2001, vol. 17, pp. 387–403.

    Article  CAS  PubMed  Google Scholar 

  37. Ivanova, N.B., Dimos, J.T., Schaniel, C., et al., A Stem Cell Molecular Signature, Science, 2002, vol. 298, pp. 601–604.

    Article  CAS  PubMed  Google Scholar 

  38. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., et al., “Stemness”: Transcriptional Profiling of Embryonic and Adult Stem Cells, Science, 2002, vol. 298, pp. 597–600.

    Article  CAS  PubMed  Google Scholar 

  39. Sato, N., Sanjuan, I.M., Heke, M., et al., Molecular Signature of Human Embryonic Stem Cells and Its Comparison with the Mouse, Dev. Biol., 2003, vol. 260, pp. 404–413.

    Article  CAS  PubMed  Google Scholar 

  40. Sperger, J.M., Chen, X., Draper, J.S., et al., Gene Expression Patterns in Human Embryonic Stem Cells and Human Pluripotent Germ Cell Tumors, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 13350–13355.

    Article  CAS  PubMed  Google Scholar 

  41. Bhattacharya, B., Miura, T., Brandenberger, R., et al., Gene Expression in Human Embryonic Stem Cell Lines: Unique Molecular Signature, Blood, 2004, vol. 103, pp. 2956–2964.

    Article  CAS  PubMed  Google Scholar 

  42. Ginis, I., Luo, Y., Miura, T., et al., Differences between Human and Mouse Embryonic Stem Cells, Dev. Biol., 2004, vol. 269, pp. 360–380.

    Article  CAS  PubMed  Google Scholar 

  43. Byrne, J.A., Mitalipov, S.M., Clepper, L., and Wolf, D.P., Transcriptional Profiling of Rhesus Monkey Embryonic Stem Cells, Biol. Reprod., 2006, vol. 75, pp. 908–915.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, J., Rao, S., Chu, J., et al., A Protein Interaction Network for Pluripotency of Embryonic Stem Cells, Nature, 2006, vol. 444, pp. 364–368.

    Article  CAS  PubMed  Google Scholar 

  45. Mitsui, K., Tokuzawa, Y., Itoh, H., et al., The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells, Cell, 2003, vol. 113, pp. 631–642.

    Article  CAS  PubMed  Google Scholar 

  46. Nichols, J., Zevnik, B., Anastassiadis, K., et al., Formation of Pluripotent Stem Cells in the Mammalian Embryo Depends on the POU Transcription Factor Oct4, Cell, 1998, vol. 95, pp. 379–391.

    Article  CAS  PubMed  Google Scholar 

  47. Pesce, M., Gross, M.K., and Scholer, H.R., In Line with Our Ancestors: Oct-4 and the Mammalian Germ, BioEssays, 1998, vol. 20, pp. 722–732.

    Article  CAS  PubMed  Google Scholar 

  48. Hanna, L.A., Foreman, R.K., Tarasenko, I.A., et al., Requirement for Foxd3 in Maintaining Pluripotent Cells of the Early Mouse Embryo, Genes Dev., 2002, vol. 16, pp. 2650–2661.

    Article  CAS  PubMed  Google Scholar 

  49. Takahashi, K. and Yamanaka, S., Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, 2006, vol. 126, pp. 663–676.

    Article  CAS  PubMed  Google Scholar 

  50. Knoepfler, P.S., Cheng, P.F., and Eisenman, R.N., N-myc Is Essential during Neurogenesis for the Rapid Expansion of Progenitor Cell Populations and the Inhibition of Neuronal Differentiation, Genes Dev., 2002, vol. 16, pp. 2699–2712.

    Article  CAS  PubMed  Google Scholar 

  51. Nakamura, Y., Sakakibara, S., Miyata, T., et al., The bHLH Gene hes1 as a Repressor of the Neuronal Commitment of CNS Stem Cells, J. Neurosci., 2000, vol. 20, pp. 283–293.

    CAS  PubMed  Google Scholar 

  52. Hatakeyama, J., Bessho, Y., Katoh, K., et al., Hes Genes Regulate Size, Shape and Histogenesis of the Nervous System by Control of the Timing of Neural Stem Cell Differentiation, Development, 2004, vol. 131, pp. 5539–5550.

    Article  CAS  PubMed  Google Scholar 

  53. Hitoshi, S., Alexson, T., Tropepe, V., et al., Notch Pathway Molecules Are Essential for the Maintenance, but not the Generation, of Mammalian Neural Stem Cells, Genes Dev., 2002, vol. 16, pp. 846–858.

    Article  CAS  PubMed  Google Scholar 

  54. Yoon, K. and Gaiano, N., Notch Signaling in the Mammalian Central Nervous System: Insights from Mouse Mutants, Nat. Neurosci., 2005, vol. 8, pp. 709–715.

    Article  CAS  PubMed  Google Scholar 

  55. Alexson, T.O., Hitoshi, S., Coles, B.L., et al., Notch Signaling Is Required to Maintain All Neural Stem Cell Populations-Irrespective of Spatial or Temporal Niche, Dev. Neurosci., 2006, vol. 28, pp. 34–48.

    Article  CAS  PubMed  Google Scholar 

  56. Campos, L.S., Decker, L., Taylor, V., and Skarnes, W., Notch, Epidermal Growth Factor Receptor, and Betal-Integrin Pathways Are Coordinated in Neural Stem Cells, J. Biol. Chem., 2006, vol. 281, pp. 5300–5309.

    Article  CAS  PubMed  Google Scholar 

  57. Stoykova, A., Gotz, M., Gruss, P., and Price, J., Pax6-Dependent Regulation of Adhesive Patterning, R-Cadherin Expression and Boundary Formation in Developing Forebrain, Development, 1997, vol. 124, pp. 3765–3777.

    CAS  PubMed  Google Scholar 

  58. Estivill-Torrus, G., Pearson, H., van Heyningen, V., et al., Pax6 Is Required to Regulate the Cell Cycle and the Rate of Progression from Symmetrical to Asymmetrical Division in Mammalian Cortical Progenitors, Development, 2002, vol. 129, pp. 455–466.

    CAS  PubMed  Google Scholar 

  59. Maekawa, M., Takashima, N., and Arai, Y., Pax6 Is Required for Production and Maintenance of Progenitor Cells in Postnatal Hippocampal Neurogenesis, Genes Cells, 2005, vol. 10, pp. 1001–1014.

    Article  CAS  PubMed  Google Scholar 

  60. Bauer, S. and Patterson, P.H., Leukemia Inhibitory Factor Promotes Neural Stem Cell Self-Renewal in the Adult Brain, J. Neurosci., 2006, vol. 26, pp. 12089–12099.

    Article  CAS  PubMed  Google Scholar 

  61. Bonaguidi, M.A., McGuire, T., Hu, M., et al., LIF and BMP Signaling Generate Separate and Discrete Types of GFAP expressing Cells, Development, 2005, vol. 132, pp. 5503–5514.

    Article  CAS  PubMed  Google Scholar 

  62. Gensburger, C., Labourdette, G., and Sensenbrenner, M., Brain Basic Fibroblast Growth Factor Stimulates the Proliferation of Rat Neuronal Precursor Cells in Vitro, FEBS Lett., 1987, vol. 217, pp. 1–5.

    Article  CAS  PubMed  Google Scholar 

  63. Reynolds, B.A. and Weiss, S., Generation of Neurons and Astrocytes from Isolated Cells of the Adult Mammalian Central Nervous System, Science, 1992, vol. 255, pp. 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  64. Kuhn, H.G., Winkler, J., Kempermann, G., et al., Epidermal Growth Factor and Fibroblast Growth Factor-2 Have Different Effects on Neural Progenitors in the Adult Rat Brain, J. Neurosci., 1997, vol. 17, pp. 5820–5829.

    CAS  PubMed  Google Scholar 

  65. Chadashvili, T. and Peterson, D.A., Cytoarchitecture of Fibroblast Growth Factor Receptor 2 (FGFR-2) Immunoreactivity in Astrocytes of Neurogenic and Non-Neurogenic Regions of the Young Adult and Aged Rat Brain, J. Comp. Neurol., 2006, vol. 498, pp. 1–15.

    Article  CAS  PubMed  Google Scholar 

  66. Zheng, W., Nowakowski, R.S., and Vaccarino, F.M., Fibroblast Growth Factor 2 Is Required for Maintaining the Neural Stem Cell Pool in the Mouse Brain Subventricular Zone, Dev. Neurosci., 2004, vol. 26, pp. 181–196.

    Article  CAS  PubMed  Google Scholar 

  67. Molofsky, A.V., He, S., Bydon, M., et al., Bmi-1 Promotes Neural Stem Cell Self-Renewal and Neural Development but not Mouse Growth and Survival by Repressing the p16Ink4a and p19Arf Senescence Pathways, Genes Dev., 2005, vol. 19, pp. 1432–1437.

    Article  CAS  PubMed  Google Scholar 

  68. Molofsky, A.V., Pardal, R., Iwashita, T., et al., Bmi-1 Dependence Distinguishes Neural Stem Cell Self-Renewal from Progenitor Proliferation, Nature, 2003, vol. 425, pp. 962–967.

    Article  CAS  PubMed  Google Scholar 

  69. Hemmati, H.D., Nakano, I., Lazareff, J.A., et al., Cancerous Stem Cells Can Arise from Pediatric Brain Tumors, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 15178–15183.

    Article  CAS  PubMed  Google Scholar 

  70. Sinor, A.D. and Lillien, L., Akt-1 Expression Level Regulates CNS Precursors, J. Neurosci., 2004, vol. 24, pp. 8531–8541.

    Article  CAS  PubMed  Google Scholar 

  71. Groszer, M., Erickson, R., Scripture-Adams, D.D., et al., Negative Regulation of Neural Stem/Progenitor Cell Proliferation by the Pten Tumor Suppressor Gene in Vivo, Science, 2001, vol. 294, pp. 2186–2189.

    Article  CAS  PubMed  Google Scholar 

  72. Nakano, I., Paucar, A.A., Bajpai, R., et al., Maternal Embryonic Leucine Zipper Kinase (MELK) Regulates Multipotent Neural Progenitor Proliferation, J. Cell Biol., 2005, vol. 170, pp. 413–427.

    Article  CAS  PubMed  Google Scholar 

  73. Qian, X., Shen, Q., Goderie, S.K., et al., Timing of CNS Cell Generation: A Programmed Sequence of Neuron and Glial Cell Production from Isolated Murine Cortical Stem Cells, Neuron, 2000, vol. 28, pp. 69–80.

    Article  CAS  PubMed  Google Scholar 

  74. Sun, Y.E., Martinowich, K., and Ge, W., Making and Repairing the Mammalian Brain-Signaling toward Neurogenesis and Gliogenesis, Semin. Cell Dev. Biol., 2003, vol. 14, pp. 161–168.

    Article  CAS  PubMed  Google Scholar 

  75. Li, W., Cogswell, C.A., and LoTurco, J.J., Neuronal Differentiation of Precursors in the Neocortical Ventricular Zone Is Triggered by BMP, J. Neurosci., 1998, vol. 18, pp. 8853–8862.

    CAS  PubMed  Google Scholar 

  76. Gross, R.E., Mehler, M.F., Mabie, P.C., et al., Bone Morphogenetic Proteins Promote Astroglial Lineage Commitment by Mammalian Subventricular Zone Progenitor Cells, Neuron, 1996, vol. 17, pp. 595–606.

    Article  CAS  PubMed  Google Scholar 

  77. Pliego-Rivero, F.B., McCormack, W.J., Jauniaux, E., et al., Forskolin-Induced Expression of Tyrosine Hydroxylase in Human Foetal Brain Cortex, Brain Res. Dev. Brain Res., 1999, vol. 114, pp. 201–206.

    Article  CAS  PubMed  Google Scholar 

  78. Iacovitti, L., Stull, N.D., and Jin, H., Differentiation of Human Dopamine Neurons from an Embryonic Carcinomal Stem Cell Line, Brain Res., 2001, vol. 912, pp. 99–104.

    Article  CAS  PubMed  Google Scholar 

  79. Park, S., Lee, K.S., Lee, Y.J., et al., Generation of Dopaminergic Neurons in vitro from Human Embryonic Stem Cells Treated with Neurotrophic Factors, Neurosci. Lett., 2004, vol. 359, pp. 99–103.

    Article  CAS  PubMed  Google Scholar 

  80. Korochkin, L.I. and Ryskov, A.P., Was August Weismann Right?, Russ. J. Genet., 2003, vol. 39, no. 2, pp. 105–111.

    Article  CAS  Google Scholar 

  81. Ryskov, A.P., Martirosyan, I.A., and Korochkin, L.I., Revealing of Somatic Mosaicism in Adult Mice by DNA Fingerprinting, Dokl. Biochim. Biophys., 2004, vol. 398, pp. 300–303.

    Article  CAS  Google Scholar 

  82. Weintraub, H., The MyoD Family and Myogenesis: Redundancy, Networks, and Thresholds, Cell, 1993, vol. 75, pp. 1241–1244.

    Article  CAS  PubMed  Google Scholar 

  83. Jan, Y.N. and Jan, L.Y., Genetic Control of Cell Fate Specification in Drosophila Peripheral Nervous System, Ann. Rev. Genet., 1994, vol. 28, pp. 373–393.

    Article  CAS  PubMed  Google Scholar 

  84. Polyakov, A.S., Shpeer, N., Britanova, O.V., et al., Cloning and Analysis of a New Neurogene in the Mouse, Russ. J. Genet., 2004, vol. 40, no. 6, pp. 694–697.

    Article  CAS  Google Scholar 

  85. Shah, N.M., Groves, A., and Anderson, D.J., Alternative Neural Crest Cell Fates Are Instructively Promoted by TGFβ Superfamily Members, Cell, vol. 85, pp. 331–343.

  86. Lo, L., Tiveron, M.C., and Anderson, D.J., MASH1 Activates Expression of the Paired Homeodomain Transcription Factor Phox2a, and Couples Pan-Neuronal and Subtype-Specific Components of Autonomic Neuronal Identity, Development, 1998, vol. 125, pp. 609–620.

    CAS  PubMed  Google Scholar 

  87. Ma, Q., Chen, Z.F., Barrantes, I.B., et al., Neurogenin 1 Is Essential for the Determination of Neuronal Precursors for Proximal Cranial Sensory Ganglia, Neuron, 1998, vol. 20, pp. 469–482.

    Article  CAS  PubMed  Google Scholar 

  88. Cau, E., Casarosa, S., and Guillemot, F., Mash1 and Ngn1 Control Distinct Steps of Determination and Differentiation in the Olfactory Sensory Neuron Lineage, Development, 2002, vol. 129, pp. 1871–1880.

    CAS  PubMed  Google Scholar 

  89. Sun, Y., Nadal-Vicens, M., Misono, S., et al., Neurogenin Promotes Neurogenesis and Inhibits Glial Differentiation by Independent Mechanisms, Cell, 2001, vol. 104, pp. 365–376.

    Article  CAS  PubMed  Google Scholar 

  90. Lu, P., Blesch, A., and Tuszynski, M.H., Induction of Bone Marrow Stromal Cells to Neurons: Differentiation, Transdifferentiation, or Artifact?, J. Neurosci. Res., 2004, vol. 77, pp. 174–191.

    Article  CAS  PubMed  Google Scholar 

  91. Takebayashi, H., Yoshida, S., Sugimori, M., et al., Dynamic Expression of Basic Helix-Loop-Helix Olig Family Members: Implication of Olig2 in Neuron and Oligodendrocyte Differentiation and Identification of a New Member, Olig3, Mech. Dev., 2000, vol. 99, pp. 143–148.

    Article  CAS  PubMed  Google Scholar 

  92. Alonso, G., NG2 Proteoglycan-Expressing Cells of the Adult Rat Brain: Possible Involvement in the Formation of Glial Scar Astrocytes Following Stab Wound, Glia, 2005, vol. 49, pp. 318–338.

    Article  CAS  PubMed  Google Scholar 

  93. Buffo, A., Vosko, M.R., Erturk, D., et al., Expression Pattern of the Transcription Factor Olig2 in Response to Brain Injuries: Implications for Neuronal Repair, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 18183–18188.

    Article  CAS  PubMed  Google Scholar 

  94. Hsieh, J. and Gage, F.H., Epigenetic Control of Neural Stem Cell Fate, Curr. Opin. Genet. Dev., 2004, vol. 14, pp. 461–469.

    Article  CAS  PubMed  Google Scholar 

  95. Shen, S., Li, J., and Casaccia-Bonnefil, P., Histone Modifications Affect Timing of Oligodendrocyte Progenitor Differentiation in the Developing Rat Brain, J. Cell Biol., 2005, vol. 169, pp. 577–589.

    Article  CAS  PubMed  Google Scholar 

  96. Ajamian, F., Suuronen, T., Salminen, A., and Reeben, M., Upregulation of Class II Histone Deacetylases mRNA during Neural Differentiation of Cultured Rat Hippocampal Progenitor Cells, Neurosci. Lett., 2003, vol. 346, pp. 57–60.

    Article  CAS  PubMed  Google Scholar 

  97. Takizawa, T., Nakashima, K., Namihira, M., et al., DNA Methylation Is a Critical Cell-Intrinsic Determinant of Astrocyte Differentiation in the Fetal Brain, Dev. Cell, 2001, vol. 1, pp. 749–775.

    Article  CAS  PubMed  Google Scholar 

  98. Schoenherr, C.J. and Anderson, D.J., The Neuron-Restrictive Silencer Factor (NRSF): A Coordinate Repressor of Multiple Neuronspecific Genes, Science, 1995, vol. 267, pp. 1360–1363.

    Article  CAS  PubMed  Google Scholar 

  99. Roopra, A., Sharling, L., Wood, I.C., et al., Transcriptional Repression by Neuron-Restrictive Silencer Factor Is Mediated via the Sin3-Histone Deacetylase Complex, Mol. Cell Biol., 2000, vol. 20, pp. 2147–2157.

    Article  CAS  PubMed  Google Scholar 

  100. Ballas, N. and Mandel, G., The Many Faces of REST Oversee Epigenetic Programming of Neuronal Genes, Curr. Opin. Neurobiol., 2005, vol. 15, pp. 500–506.

    Article  CAS  PubMed  Google Scholar 

  101. Paquette, A.J., Perez, S.E., and Anderson, D.J., Constitutive Expression of the Neuron-Restrictive Silencer Factor (NRSF)/REST in Differentiating Neurons Disrupts Neuronal Gene Expression and Causes Axon Pathfinding Errors in Vivo, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 12318–12323.

    Article  CAS  PubMed  Google Scholar 

  102. Ballas, N., Battaglioli, E., Atouf, F., et al., Regulation of Neuronal Traits by a Novel Transcriptional Complex, Neuron, 2001, vol. 31, pp. 353–365.

    Article  CAS  PubMed  Google Scholar 

  103. Su, X., Kameoka, S., Lentz, S., and Majumder, S., Activation of REST/NRSF Target Genes in Neural Stem Cells Is Sufficient to Cause Neuronal Differentiation, Mol. Cell. Biol., 2004, vol. 24, pp. 8018–8025.

    Article  CAS  PubMed  Google Scholar 

  104. Chong, J.A., Tapia-Ramirez, J., Kim, S., et al., REST: A Mammalian Silencer Protein that Restricts Sodium Channel Gene Expression to Neurons, Cell, 1995, vol. 80, pp. 949–957.

    Article  CAS  PubMed  Google Scholar 

  105. Palm, K., Belluardo, N., Metsis, M., and Timmusk, T., Neuronal Expression of Zinc Finger Transcription Factor REST/NRSF/XBR Gene, J. Neurosci., 1998, vol. 18, pp. 1280–1296.

    CAS  PubMed  Google Scholar 

  106. Sun, Y.M., Greenway, D.J., Johnson, R., et al., Distinct Profiles of REST Interactions with Its Target Genes at Different Stages of Neuronal Development, Mol. Biol. Cell, 2005, vol. 16, pp. 5630–5638.

    Article  CAS  PubMed  Google Scholar 

  107. Kuwabara, T., Hsieh, J., Nakashima, K., et al., A Small Modulatory dsRNA Specifies the Fate of Adult Neural Stem Cells, Cell, 2004, vol. 116, pp. 779–793.

    Article  CAS  PubMed  Google Scholar 

  108. Conaco, C., Otto, S., Han, J.-J., and Mandel, G., Reciprocal Actions of REST and a microRNA Promote Neuronal Identity, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 2422–2427.

    Article  CAS  PubMed  Google Scholar 

  109. Morrison, S.J., Neuronal Potential and Lineage Determination by Neural Stem Cells, Curr. Opin. Cell Biol., 2001, vol. 13, pp. 666–672.

    Article  CAS  PubMed  Google Scholar 

  110. Kageyama, R. and Nakanishi, S., Helix-Loop-Helix Factors in Growth and Differentiation of the Vertebrate Nervous System, Curr. Opin. Genet. Dev., 1997, vol. 7, pp. 659–665.

    Article  CAS  PubMed  Google Scholar 

  111. Furukawa, T., Mukherjee, S., Bao, Z.Z., et al., Rax, Hes1, and notch1 Promote the Formation of Muller Glia by Postnatal Retinal Progenitor Cells, Neuron, 2000, vol. 26, pp. 383–394.

    Article  CAS  PubMed  Google Scholar 

  112. Morrison, S.J., Perez, S., Verdi, J.M., et al., Transient Notch Activation Initiates an Irreversible Switch from Neurogenesis to Gliogenesis by Neural Crest Stem Cells, Cell, 2000, vol. 101, pp. 499–510.

    Article  CAS  PubMed  Google Scholar 

  113. Hojo, M., Ohtsuka, T., Hashimoto, N., et al., Glial Cell Fate Specification Modulated by the BHLH Gene Hes5 in Mouse Retina, Development, 2000, vol. 127, pp. 2515–2522.

    CAS  PubMed  Google Scholar 

  114. Tanigaki, K., Nogaki, F., Takahashi, J., et al., Notch1 and Notch3 Instructively Restrict bFGF-Responsive Multipotent Neural Progenitor Cells to an Astroglial Fate, Neuron, 2001, vol. 29, pp. 45–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Revishchin.

Additional information

Original Russian Text © G.V. Pavlova, V.E. Okhotin, L.I. Korochkin, A.V. Revishchin, 2008, published in Genetika, 2008, Vol. 44, No. 3, pp. 293–304.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlova, G.V., Okhotin, V.E., Korochkin, L.I. et al. Genomic regulation of neural stem cells in mammals. Russ J Genet 44, 247–256 (2008). https://doi.org/10.1134/S1022795408030010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795408030010

Keywords

Navigation