Skip to main content
Log in

Study of the diversity in a group of phages of Pseudomonas aeruginosa species PB1 (Myoviridae) and their behavior in adsorbtion-resistant bacterial mutants

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A group of 12 Pseudomonas aeruginosa virulent bacteriophages of different origin scored with regard to the plaque phenotype are assigned to PB1-like species based on the similarity in respect to morphology of particles and high DNA homology. Phages differ in restriction profile and the set of capsid major proteins. For the purpose of studying adsorption properties of these phages, 20 random spontaneous mutants of P. aeruginosa PAO1 with the disturbed adsorption placed in two groups were isolated. Mutants of the first group completely lost the ability to adsorb all phages of this species. It is assumed that their adsorption receptors are functionally inactive or lost at all, because the attempt to isolate phage mutants or detect natural phages of PB1 species capable of overcoming resistance of these bacteria failed. The second group includes five bacterial mutants resistant to the majority of phages belonging to species PB1. These mutants maintain the vigorous growth of phage SN and poor growth of phage 9/3, which forms turbid plaques with low efficiency of plating. In the background of weak growth, phage 9/3 yields plaques that grew well. The examination of the progeny of phage 9/3, which can grow on these bacteria, showed that its DNA differed from DNA of the original phage 9/3 by restriction profile and is identical to DNA of phage PB1 with regard to this trait. Data supported a suggestion that this phage variant resulted from recombination of phage 9/3 DNA with the locus of P. aeruginosa PAO1 genome encoding the bacteriocinogenic factor R. However, this variant of phage 9/3 did not manifest the ability to grow on phage-resistant mutants of the first group. Possible reasons for the difference between phages 9/3 or SN and the remaining phages of PB1 species are discussed. A preliminary formal scheme of the modular structure for adsorption receptors on the surface of P. aeruginosa PAO1 bacteria was constructed based on the analysis of growth of some other phage species on adsorption mutants of the first type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaborina, O., Kohler, J.E., Wang, Y., et al., Identification of Multi-Drug Resistant Pseudomonas aeruginosa Clinical Isolates That Are Highly Disruptive to the Intestinal Epithelial Barrier, Ann. Clinical Microbiol. Antimicrobials, 2006, vol. 5, p. 14.

    Article  Google Scholar 

  2. Krylov, V.N., Rasskazchikova, S.A., and Al’nikin, A.F., Selection and Properties of an “Absolutely Phage-Resistant” Mutant of Pseudomonas putida PpG1, Russ. J. Genet., 1996, vol. 32, no. 3, pp. 300–304.

    CAS  Google Scholar 

  3. Holloway, B.W., Egan, J.B., and Monk, M., Lysogeny in Pseudomonas aeruginosar, Aust. J. Exptl. Biol. Med. Sci., 1960, vol. 38, pp. 321–329.

    Article  CAS  Google Scholar 

  4. Lindberg, R.B. and Latta, R.L., Phage Typing of Pseudomonas aeruginosa: Clinical and Epidemiologic Considerations, J. Infect. Dis., 1974, vol. 130, pp. S33–S42.

    Article  PubMed  Google Scholar 

  5. Sjoberg, L. and Lindberg, A.A., Phage Typing of Pseudomonas aeruginosa, Acta Pathol. Microbiol. Scand., 1968, vol. 74, no. 1, pp. 61–68.

    Article  PubMed  CAS  Google Scholar 

  6. Ackermann, H.-W., Cartier, C., Slopek, S., and Vieu, J.F., Morphology of Pseudomonas aeruginosa Typing Phages of the Lindberg Set, Ann. Inst. Pasteur Virol., 1988, vol. 139, no. 4, pp. 389–404.

    Article  PubMed  CAS  Google Scholar 

  7. Krylov, V.N., Tolmachova, T.O., and Akhverdian, V.Z., DNA Homology in Species of Bacteriophages Active on Pseudomonas aeruginosa, Arch. Virol., 1993, vol. 131, nos. 1–2, pp. 141–151.

    Article  PubMed  CAS  Google Scholar 

  8. Akhverdyan, V.Z., Khrenova, E.A., Bogush, V.G., et al., Wide Distribution of Transposable Phages in Natural Populations of Pseudomonas aeruginosa, Genetika (Moscow), 1984, vol. 20, no. 10, pp. 1612–1619.

    CAS  Google Scholar 

  9. Krylov, V.N., Smirnova T.A., Minenkova, I.B., et al., Pseudomonas Bacteriophage ϕKZ Contains an Inner Body in Its Capsid, Can. J. Microbiol., 1984, vol. 30, pp. 758–762.

    Article  PubMed  CAS  Google Scholar 

  10. Burkal’tseva, M.V., Krylov, V.N., Pleteneva, E.A., et al., Phenotypic Characterization of a Group of Giant ϕKZlike Bacteriophages of Pseudomonas aeruginosa, Russ. J. Genet., 2002, vol. 38, no. 11, pp. 1242–1250.

    Article  Google Scholar 

  11. Akhverdyan, V.Z., Khrenova, E.A., Reulets, M.A., et al., Characteristics of Pseudomonas aeruginosa Fags-Transpozons Belonging to Two Groups Differing in DNA-DNA Homology, Genetika (Moscow), 1985, vol. 21, no. 5, pp. 350–747.

    Google Scholar 

  12. Akhverdian, V.Z., Khrenova, E.A., Lobanov, A.O., and Krylov, V.N., The Role of DNA Divergence on the Evolution of Transposable Phages of the Pseudomonas aeruginosa B3 Group, Russ. J. Genet., 1998, vol. 34, no. 6, pp. 699–701.

    Google Scholar 

  13. Burkaltseva, M.V., Pleteneva, E.A., Shaburova, O.V., et al., Conserved Genomes of ϕKMV-like Bacteriophages (T7 Subgroup) Active on Pseudomonas aeruginosa, Russ. J. Genet., 2006, vol. 42, no. 1, pp. 27–31.

    Article  CAS  Google Scholar 

  14. Nakayama, K., Kanaya, S., Ohnishi, M., et al., The Complete Nucleotide Sequence of phi CTX, a Cytotoxin-Converting Phage of Pseudomonas aeruginosa: Implications for Phage Evolution and Horizontal Gene Transfer via Bacteriophages, Mol. Microbiol., 1999, vol. 31, no. 2, pp. 399–419.

    Article  PubMed  CAS  Google Scholar 

  15. Kropinski, A.M., Sequence of the Genome of the Temperate, Serotype-Converting, Pseudomonas aeruginosa Bacteriophage D3, J. Bacteriol., 2000, vol. 182, no. 21, pp. 6066–6074.

    Article  PubMed  CAS  Google Scholar 

  16. Byrne, M. and Kropinski, A.M., The Genome of the Pseudomonas aeruginosa Generalized Transducing Bacteriophage F116, Gene, 2005, pp. 187–194.

  17. Mesyanzhinov, V., Robben, J., Grymonprez, B., et al., The Genome of Bacteriophage ϕKZ of Pseudomonas aeruginosa, J. Mol. Biol., 2002, vol. 317, pp. 1–19.

    Article  PubMed  CAS  Google Scholar 

  18. Lavigne, R., Burkaltseva, M.V., Robben, J., et al., The Genome of Bacteriophage ϕKMV, a T7-Like Virus Infecting Pseudomonas aeruginosa, Virology, 2003, vol. 312, pp. 49–59.

    Article  PubMed  CAS  Google Scholar 

  19. Wang, P.W., Chu, L., and Guttman, D.S., Complete Sequence and Evolutionary Genomic Analysis of the Pseudomonas aeruginosa Transposable Bacteriophage D3112, J. Bacteriol., 2004, vol. 186, no. 2, pp. 400–410.

    Article  PubMed  CAS  Google Scholar 

  20. Braid, M.D., Silhavy, J.L., Kitts, C.L., et al., Complete Genomic Sequence of Bacteriophage B3, a Mu-Like Phage of Pseudomonas aeruginosa, J. Bacteriol., 2004, vol. 186, no. 19, pp. 6560–6574.

    Article  PubMed  CAS  Google Scholar 

  21. Hertveldt, K., Lavigne, R., Pleteneva, E., et al., Genome Comparison of Pseudomonas aeruginosa Large Phages, J. Mol. Biol., 2005, vol. 354, no. 3, pp. 536–545.

    Article  PubMed  CAS  Google Scholar 

  22. Kwan, T., Liu, J., Dubow, M., et al., Comparative Genomic Analysis of 18 Pseudomonas aeruginosa Bacteriophages, J. Bacteriol., 2006, vol. 188, no. 3, pp. 1184–1187.

    Article  PubMed  CAS  Google Scholar 

  23. Kageyama, M., Shinomiya, T., Aihara, Y., and Kobayashi, M., Characterization of a Bacteriophage Related to R-Type Pyocins, J. Virol., 1979, vol. 32, no. 3, pp. 951–957.

    PubMed  CAS  Google Scholar 

  24. Nakayama, K., Takashima, K., Ishihara, H., et al., The R-Type Pyocin of Pseudomonas aeruginosa Is Related to P2 Phage, and the F-Type Is Related to Lambda Phage, Mol. Microbiol., 2000, vol. 38, no. 2, pp. 213–231.

    Article  PubMed  CAS  Google Scholar 

  25. Krylov, V.N., Yanenko, A.S., and Cheremukhina, L.V., Differences in Allelic State of Genes Controlling the Specificity of Absorption in the Group of Pseudomonas aeruginosa Phages-Transpozons, Genetika (Moscow), 1986, vol. 22, no. 7, pp. 1093–1098.

    CAS  Google Scholar 

  26. Miller, J.H., Experiments in Molecular Genetics, New York: Cold Spring Harbor Lab., 1972.

    Google Scholar 

  27. Adams, M.H., Bacteriophages, New York: Interscience Publ., 1959.

    Google Scholar 

  28. Sambrook, J., Fritsch, D.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.

    Google Scholar 

  29. Ackermann, H.-W., Cartier, C., Slopek, S., and Vieu, J.-F., Morphology of Pseudomonas aeruginosa Typing Phages of the Lindberg Set, Ann. Inst. Pasteur. Virol., 1988, vol. 139, pp. 389–404.

    Article  PubMed  CAS  Google Scholar 

  30. Ito, S. and Kageyama, M., Relationship between Pyocins and Bacteriophages in Pseudomonas aeruginosa, J. Gen. Appl. Microbiol., 1970, vol. 16, p. 231.

    Article  CAS  Google Scholar 

  31. Kulakov, L.A., Gorelyshev, A.G., Kul’ba, A.M., and Krylov, V.N., Study of Pseudomonas putida PpG1 Resistance to Different Bacteriophages, Genetika (Moscow), 1981, vol. 17, no. 10, pp. 1737–1744.

    CAS  Google Scholar 

  32. Al’nikin, A.F., Dzhusupova, A.B., Akhverdyan, V.Z., and Krylov, V.N., Phage-Resistant Mutants Pseudomonas putida: New Types of Resistance, Genetika (Moscow), 1991, vol. 27, no. 1, pp. 39–50.

    Google Scholar 

  33. Jarrell, F. and Kropinski, A.M., Identification of the Cell Wall Receptor for Bacteriophage E79 in Pseudomonas aeruginosa Strain PAO, J. Virol., 1977, vol. 23, no. 3, pp. 461–466.

    PubMed  CAS  Google Scholar 

  34. Holloway, B.W., Romling, U., and Tummler, B., Genomic Mapping of Pseudomonas aeruginosa PAO, Microbiology, 1994, vol. 140, pp. 2907–2929.

    Article  PubMed  CAS  Google Scholar 

  35. Bryan, L.E., O’Hara, K., and Wong, S., Lipopolysaccha-ride Changes in Impermeability-Type Aminoglycoside Resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 1984, vol. 26, no. 2, pp. 250–255.

    PubMed  CAS  Google Scholar 

  36. Zhou, X., George, S.E., Frank, D.W., et al., Isolation and Characterization of an Attenuated Strain of Pseudomonas aeruginosa AC 869, a 3,5-Dichlorobenzoate Degrader, Appl. Environ. Microbiol., 1997, vol. 63, no. 4, pp. 1389–1395.

    PubMed  CAS  Google Scholar 

  37. Tetart, F., Repoila, F., Monod, C., and Krisch, H.M., Bacteriophage T4 Host Range Is Expanded by Duplications of a Small Domain of the Tail Fiber Adhesin, J. Mol. Biol., 1996, vol. 24, no. 258(5), pp. 726–731.

    Article  Google Scholar 

  38. Howe, M.M., The Invertible G Segment of Phage Mu, Cell, 1980, vol. 21, no. 3, pp. 605–606.

    Article  PubMed  CAS  Google Scholar 

  39. Tominaga, A., Ikemizu, S., and Enomoto, M., Site-Specific Recombinase Genes in Three Shigella Subgroups and Nucleotide Sequences of a pinB Gene and an Invertible B Segment from Shigella boydii, J. Bacteriol., 1991, vol. 173, no. 13, pp. 4079–4087.

    PubMed  CAS  Google Scholar 

  40. Hayashi, T., Matsumoto, H., Ohnishi, M., et al., Cytotoxin-Converting Phages, phiCTX and PS21, are R Piocin-Related Phages, FEMS Microbiol. Lett., 1994, vol. 1, no. 122(3), pp. 239–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Krylov.

Additional information

Original Russian Text © E.A. Pleteneva, O.V. Shaburova, N.N. Sykilinda, K.A. Miroshnikov, V.A. Kadykov, S.V. Krylov, V.V. Mesyanzhinov, V.N. Krylov, 2008, published in Genetika, 2008, Vol. 44, No. 2, pp. 185–194.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pleteneva, E.A., Shaburova, O.V., Sykilinda, N.N. et al. Study of the diversity in a group of phages of Pseudomonas aeruginosa species PB1 (Myoviridae) and their behavior in adsorbtion-resistant bacterial mutants. Russ J Genet 44, 150–158 (2008). https://doi.org/10.1134/S1022795408020051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795408020051

Keywords

Navigation