Abstract
A collection of bacterial antibiotic resistance strains isolated from arctic permafrost subsoil sediments of various age and genesis was created. The collection included approximately 100 strains of Gram-positive (Firmicutes, Arthrobacter) and Gram-negative bacteria (Bacteroidetes, γ-Proteobacteria, and α-Proteobacteria) resistant to aminoglycoside antibiotics (gentamicin, kanamycin, and streptomycin), chloramphenicol and tetracycline. Antibiotic resistance spectra were shown to differ in Gram-positive and Gram-negative bacteria. Multidrug resistance strains were found for the first time in ancient bacteria. In studies of the molecular nature of determinants for streptomycin resistance, determinants of the two types were detected: strA-strB genes coding for aminoglycoside phosphotransferases and genes aadA encoding aminoglycoside adenylyltransferases. These genes proved to be highly homologous to those of contemporary bacteria.
References
Davies, J., Inactivation of Antibiotics and the Dissemination of Resistance Genes, Science, 1994, vol. 264, pp. 375–382.
Esiobu, N., Armenta, L., and Ike, J., Antibiotic Resistance in Soil and Water Environments, Int. J. Environ. Health Reas., 2002, vol. 12, pp. 133–144.
Riesenfield, S.C., Goodman, R.M., and Handelsman, J., Uncultural Soil Bacteria Are a Reservoir of New Antibiotic Resistance Genes, Environ. Microbiol., 2004, vol. 6, pp. 981–989.
D’Costa, V.M., McGrann, K.M., Hughes, D.W., and Wright, G.D., Sampling the Antibiotic Resistome, Science, 2006, vol. 311, no. 5759, pp. 374–377.
Vorobyova, E., Soina, V., Gorlenko, M., et al., The Deep Cold Biosphere: Facts and Hypothesis, FEMS Microbiol. Rev., 1997, vol. 20, pp. 277–290.
Gilichinsky, D.A., Permafrost Model of Extraterrestrial Habitat, in Astrobiology IX, Horneck, G. and Baumstark-Klan, C., Eds., Berlin: Springer Verlag, 2001, pp, 271–295.
Soina, V.S. and Vorobyova, E.A., Adaptation of Bacteria to Terrestrial Permafrost Environment: A Biomodel for Astrobiology, in Origins: Genesis, Evolution and Biodiversity of Life, Seckbach, J., Ed., Dordrecht: Kluwer, 2004, pp. 427–444.
Tiedje, J., Smith, G.B., Simkins, S., et al., Recovery of DNA, Denitrifiers and Pattern of Antibiotic Sensitivity in Microorganisms from Ancient Permafrost Soils of Eastern Siberia, in Viable Microorganisms in Permafrost, Gilichinsky, D.A., Ed., Puschino: Ross. Akad. Sci., 1994, pp. 83–98.
Ponder, M.A., Gilmour, S.J., Bergholz, P.W., et al., Characterization of Potential Stress Responses in Ancient Siberian Permafrost Psychroactive Bacteria, FEMS Microbiol. Ecol., 2005, vol. 53, pp. 103–115.
Vishnivetskaya, T.A., Petrova, M.A., Urbance, J., et al., Bacterial Community in Ancient Siberian Permafrost As Characterized by Culture and Culture-Independent Methods, Astrobiology, 2006, vol. 6, pp. 400–414.
Petrova, M.A., Mindlin, S.Z., Gorlenko, Zh.M., et al., Mercury-Resistant Bacteria from Permafrost Sediments and Prospects for Their Use in Comparative Studies of Mercury Resistance Determinants, Russ. J. Genet., 2002, vol. 38, no. 11, pp. 1330–1334.
Kholodii, G., Mindlin, S., Petrova, M., and Minakhina, S., Tn5060 from the Siberian Permafrost Is Most Closely Related to the Ancestor of Tn21 Prior to Integron Acquisition, FEMS Microbiol. Lett., 2003, vol. 226, pp. 251–255.
Mindlin, S., Minakhin, L., Petrova, M., et al., Present-Day Mercury Resistance Transposons Are Common in Bacteria Preserved in Permafrost Grounds Since the Upper Pleistocene, Res. Microbiol., 2005, vol. 156, pp. 994–1004.
Vishnivetskaya, T., Kathariou, S., McGrath, J., et al., Low-Temperature Recovery Strategies for the Isolation of Bacteria from Ancient Permafrost Sediments, Extremophiles, 2000, vol. 4, pp. 165–173.
Balkwill, D.L., Fredrickson, J.K., and Thomas, J.M., Vertical and Horizontal Variations in the Physiological Diversity of the Aerobic Chemoheterotrophic Bacterial Microflora in Deep Southeast Coastal-Plain Subsurface Sediments, Appl. Environ. Microbiol., 1989, vol. 55, pp. 1058–1065.
Barlow, R.S., Peberton, J.M., Desmarchelier, P.M., and Gobius, K.S., Isolation and Characterization of Integron-Containing Bacteria without Antibiotic Selection, Antimicrob. Agents Chemother., 2004, vol. 48, pp. 838–842.
Marchesi, J.R., Sato, T., Weghtman, A.J., et al., Design and Evaluation of Useful Bacterium-Specific PCR Primers That Amplify Genes Coding for Bacterial 16S rRNA, Appl. Environ. Microbiol., 1998, vol. 64, pp. 795–799.
Lane, D.J., 16/23S rRNA Sequencing, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., Chichester,: Wiley, 1991, pp. 115–175.
Altschul, S.F., Gish, W., Miller, W., et al., Basic Local Alignment Search Tool, J. Mol. Biol., 1990, vol. 215, pp. 403–410.
Carattoli, A., Filetici, E., Villa, L., et al., Antibiotic Resistance Genes and Salmonella Genomic Island 1 in Salmonella enterica Serovar Typhimurium Isolated in Italy, Antimicrob. Agents Chemoter., 2003, vol. 46, pp. 2821–2828.
Randall, L.P., Cooles, S.W., Osborn, M.K., et al., Antibiotic Resistance Genes, Integrons and Multiple Antibiotic Resistance in Thirty-Five Serotypes of Salmonella enterica Isolated from Humans and Animals in the UK, J. Antimicrob. Chemother., 2004, vol. 53, pp. 208–216.
Walker, R.A., Lindsay, E., Woodward, M.J., et al., Variation in Clonality and Antibiotic-Resistance Genes Among Multiresistant Salmonella enterica Serotype Typhimurium Phage-Type U302 (MR U302) from Humans, Animals, and Foods, Microb. Drug Resist., 2001, vol. 7, pp. 13–21.
Scholz, P., Haring, V., Wittmann-Liebold, B., et al., Complete Nucleotide Sequence and Gene Organization of the Broad-Host-Range Plasmid RSF1010, Gene, 1989, vol. 75, pp. 271–288.
Grinsted, J., De La Cruz, F., Altenbuchner, J., and Schmitt, R., Complementation of Transposition of tnpA Mutants of Tn3, Tn21, Tn501, and Tn1721, Plasmid, 1982, vol. 8, pp. 276–286.
Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed, New York: Cold Spring Harbor Lab., 1989.
Shaw, K.J., Rather, P.R., Hare, R.S., and Miller, G.H., Molecular Genetics of Aminoglycoside Resistance Genes and Familial Relationships of the Aminoglycoside-Modifying Enzymes, Microbiol. Rev., 1993, vol. 57, pp. 138–163.
Kholodii, G., Mindlin, S., Gorlenko, Zh., et al., Translocation of Transposition Deficient (TndPKLH2-Like) Transposons in the Natural Environment: Mechanistic Insights from the Study of Ajacent DNA Sequences, Microbiology, 2004, vol. 150, pp. 979–992.
Lambert, T., Ploy, M.-C., Denis, F., and Courvalin, P., Characterization of the Chromosomal aac(6′)-lz Gene of Stenotrophomonas maltophilia, Antimicrob. Agents Chemother., 1999, vol. 43, pp. 2366–2371.
Gomez, M.J. and Neyfakh, A.A., Genes Involved in Intrinsic Antibiotic Resistance of Acinetobacter baylyi, Antimicrob. Agents Chemother., 2006, vol. 50, pp. 3562–3567.
Hughes, V.M. and Datta, N., Conjugative Plasmids in Bacteria of the “Preantibiotic Era,” Nature, 1983, vol. 302, pp. 725–726.
Sundin, G.W., Distinct Recent Lineage of the strA–strB Streptomycin-Resistance Genes in Clinical and Environmental Bacteria, Curr. Microbiol., 2002, vol. 45, pp. 63–69.
Recchia, G.D. and Hall, R.M., Gene Cassettes: A New Class of Mobile Element, Microbiology, 1995, vol. 141, pp. 3015–3027.
Tauch, A., Krieft, S., Kalinowski, J., and Puhler, A., The 51.409-bp R-Plasmid pTP10 from the Multiresistant Clinical Isolate Corynebacterium striatum M82B Is Composed of DNA Segments Initially Identified in Soil Bacteria and in Plant, Animal, and Human Pathogen, Mol. Gen. Genet., 2000, vol. 263, no. 1, pp. 1–11.
Sunde, M. and Norström, M., The Genetic Background for Streptomycin Resistance in Escherichia coli Influences the Distribution of MICs, J. Antimicrob. Chemother., 2005, vol. 56, pp. 87–90.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © S.Z. Mindlin, V.S. Soina, M.A. Petrova, Zh.M. Gorlenko, 2008, published in Genetika, 2008, Vol. 44, No. 1, pp. 36–44.
Rights and permissions
About this article
Cite this article
Mindlin, S.Z., Soina, V.S., Petrova, M.A. et al. Isolation of antibiotic resistance bacterial strains from Eastern Siberia permafrost sediments. Russ J Genet 44, 27–34 (2008). https://doi.org/10.1134/S1022795408010043
Received:
Issue Date:
DOI: https://doi.org/10.1134/S1022795408010043