Skip to main content
Log in

Prospects of using self-fertility in breeding rye populations varieties

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The advances in rye hybrid breeding are due to the use of self-fertile forms. Rye self-fertility is determined by mutations in one of the three gametophytic loci (S, Z, and T), which control the reaction of incompatibility. Attempts to construct synthetic populations by combining self-fertile forms selected by general combining ability failed because of high-rate selfing. A breeding scheme was proposed to include crosses of a line carrying a self-fertility mutation in the S locus with the population subject to improvement, selfing of the resulting hybrids, selection and intermating of the best inbred progenies, and subsequent elimination of the self-fertility mutation from the breeding material with the use of the Prx7 allozyme marker. The scheme can be employed in improvement of the existing rye varieties, their differentiation into populations differing in end use, and construction and improvement of complementary gene pools in hybrid breeding. To facilitate the implementation of the scheme, an original instrument was designed for high-throughput isozyme analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewontin, R.C and Berlau, J.R, The Political Economy of Agricultural Research, Agroecology, Carrol, C.R., et al., Eds., New York: McGraw Hill, 1990, pp. 613–628.

    Google Scholar 

  2. Duvick, D.N, Heterosis: Feeding People and Protecting Natural Resources, Genetics and Exploitation of Heterosis in Crops, Coors, J.G., et al., Eds., ASA-CSSA-SSSA, 1999, pp. 19–29.

  3. Kuckuck, H., The Breeding of Cleistogamous Genetic Stocks of Secale cereale, Hod. Rosl. Aklim. Nasienn., 1975, vol. 19, nos. 5–6, pp. 487–493.

    Google Scholar 

  4. Wricke, G., Comparison of Selection Based on Yield of Half Sib Progenies and of I1 Lines per se in Rye Secale cereale L., Theor. Appl. Genet., 1976, vol. 47, pp. 265–269.

    Article  Google Scholar 

  5. Kobylyanskii, V.D., Katerova, A.G., and Lapikov, N.S., Development of Initial Material for Breeding of Hybrid Rue in Russia, Russ. J. Genet., 1994, vol. 30, no. 10, pp. 1216–1224.

    Google Scholar 

  6. Wilde, P., Multi-Stage Selection for Combining Ability among Pollen Parent Lines in Hybrid Rye Breeding, Vortr. Pflanzenzuchtung, 1996, vol. 35, pp. 15–25.

    Google Scholar 

  7. Flamme, W., Dill, P., Jansen, G., and Roux, S., Developing Rye Germplasm for Alternative Uses: Quality Assessment Methods and Progress from Selection, Vortr. Pflanzenzuchtung, 1996, vol. 35, pp. 129–138.

    Google Scholar 

  8. Geiger, H.H. and Miedaner, T., Hybrid Rye and Heterosis, Genetics and Exploitation of Heterosis in Crops, Coors, J.G., et al., Eds., ASA-CSSA-SSSA, 1999, pp. 439–450.

  9. Goncharenko, A.A., The Breeding of Winter Rye Inbred Lines, in Identifitsirovannyi genofond rastenii i selektsiya (Identified Plant Gene Pool and Breeding), St. Petersburg: VIR, 2005, pp. 330–343.

    Google Scholar 

  10. Lundqvist, A., Self-Incompatibility in Rye: IV. Factors Related to Self-Seeding, Hereditas, 1958, vol. 44, pp. 193–256.

    Article  Google Scholar 

  11. Wricke, G. and Wehling, P., Linkage between an Incompatibility Locus and a Peroxidase Isozyme Locus (Prx7) in Rye, Theor. Appl. Genet., 1985, vol. 71, pp. 289–292.

    Google Scholar 

  12. Gertz, A. and Wricke, G., Linkage between the Incompatibility Locus Z and β-Glugosidase Isozyme Locus (β-Glu) in Rye, Plant Breed., 1989, vol. 102, pp. 255–259.

    Article  Google Scholar 

  13. Fuong, F.T., Voylokov, A.V., and Smirnov, V.G., Genetic Studies of Self-Fertility in Rye Secale cereale L.: 2. The Search for Isozyme Marker Gene Linked to Self-Incompatibility Loci, Theor. Appl. Genet., 1993, vol. 87, pp. 619–623.

    Article  CAS  Google Scholar 

  14. Egorova, I.A. and Voylokov, A.V., Characterization of Inbred Lines of Rye by Self-Fertility Mutations in Major Loci of Incompatibility, Russ. J. Genet., 1998, vol. 34, no. 11, pp. 1268–1273.

    CAS  Google Scholar 

  15. Hayman, D.J. and Richter, J., Mutations Affecting Self-Incompatibility in Phalaris coerulescens Desf. (Poaceae), Heredity, 1992, vol. 68, pp. 495–503.

    Google Scholar 

  16. Schlegel, R., Melz, G., and Korzun, V., Genes, Marker and Linkage Data of Rye (Secale cereale L.): 5th Updated Inventory, Euphytica, 1998, vol. 101, pp. 23–67.

    Article  CAS  Google Scholar 

  17. Smirnov, V.G. and Sosnikhina, S.P., Genetika rzhi (Genetics of Rye), Leningrad: Leningr. Gos. Univ., 1984.

    Google Scholar 

  18. Voylokov, A.V., Korzun, V., and Börner, A., Mapping of Three Self-Fertility Mutations in Rye (Secale cereale L.) using RFLP, Isozyme and Morphological Markers, Theor. Appl. Genet., 1997, vol. 97, pp. 147–153.

    Article  Google Scholar 

  19. Korzun, V., Malyshev, S., Voylokov, A.V., and Borner, A., A Genetic Map of Rye (Secale cereale L.) Combining RFLP, Isozyme, Protein, Microsatellite and Gene Loci, Theor. Appl. Genet., 2001, vol. 102, pp. 709–717.

    Article  CAS  Google Scholar 

  20. Schnell, F.W. and Geiger, H.H., Die Zuchtung von Roggensorten und Inzucht keinen I Selbstungsanteilen in Polycross-Nachkommenschaften, Theor. Appl. Genet., 1970, vol. 40, pp. 305–311.

    Article  Google Scholar 

  21. Wricke, G., Inzuchtdepression und Genwirkung beim Roggen (Secale cereale L.), Theor. Appl. Genet., 1973, vol. 43, pp. 83–87.

    Article  Google Scholar 

  22. Singh, R.K., Geiger, H.H., Diener, C., and Morgenstern, K., Effect of Number of Parents and Synthetic Generation on the Performance of Self-Incompatible and Self-Fertile Rye Populations, Crop Sci., 1984, vol. 24, pp. 306–309.

    Article  Google Scholar 

  23. Wricke, G., Degree of Self-Fertilization under Free Pollination in Rye Populations Containing a Self-Fertility Gene, Zeitschrift Pflanzenzuchtung, 1970, vol. 82, pp. 281–285.

    Google Scholar 

  24. Schmidt-Stohn, G., Wricke, G., and Weber, W.E., Estimation of Selfing Rates in Self-Fertile Rye Plants Using Isozyme Marker Loci, Z. Pflanzenzuchtung, 1986, vol. 96, pp. 181–184.

    Google Scholar 

  25. Smirnov, V.G. and Voilokov, A.V., Autofertile Forms of Cross Pollinating Plants and Perspectives of Their Usage in Breeding, Selektsiya rzhi (Rye Breeding), Proc. Symp. EUKARPIA, Leingrad: VIR, 1990, pp. 19–27.

    Google Scholar 

  26. Voilokov, A.V., RF Patent no. 2 173 453.

  27. Fearon, C.H., Cornish, M.A., Hayward, M.D., and Lawrence, M.J., Self-Incompatibility in Ryegrass: X. Number and Frequency of Alleles in a Natural Population of Lolium perenne L., Hereditas, 1994, vol. 73, pp. 254–261.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voylokov.

Additional information

Original Russian Text © A.V. Voylokov, 2007, published in Genetika, 2007, Vol. 43, No. 10, pp. 1402–1410.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voylokov, A.V. Prospects of using self-fertility in breeding rye populations varieties. Russ J Genet 43, 1173–1180 (2007). https://doi.org/10.1134/S1022795407100122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407100122

Keywords

Navigation