Skip to main content
Log in

Mutations in structural genes of tryptophan metabolic enzymes of the kynurenine pathway modulate some units of the L-glutamate receptor-actin cytoskeleton signaling cascade

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

‘The problem of tracing the emergence of multidimensional behavior from the genes is a challenge that may not become obsolete so soon.” (S. Benzer, 1975)

Abstract

Methods of immunohistochemistry and fluorescent staining was used to study the localization and amounts of protein components of the signal cascade connecting the receptor link (NMDA-subtype glutamate receptor) with actin of the cytoskeleton in the head ganglia of Drosophila strain Canton-S (wild type, control) and strains carrying mutations vermilion, cinnabar, and cardinal, which sequentially inactivate tryptophanhydrolyzing enzymes during its metabolism into ommochrome. The obtained data are evidence for modulatory effects of genes controlling the kynurenine pathway of tryptophan metabolism on the major components of the signal cascade: the initial link (NMDA receptor, postsynaptic density protein-95, a structural protein involved in receptor localization and internalization), the intermediate link (limkinase-1, the key neuronal enzyme in actin remodeling) and the final link (f-actin, the critical factor in the morphogenesis of synaptic structures and, hence, in the processes of synaptic plasticity, learning and memory). It is suggested that kynurenine acid (an endogenous nonspecific antagonist of L-glutamate receptor) and 3-hydroxykynurenine capable of inducing a nonspecific stimulating effect are biochemical intermediates of the effects of these genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benzer, S., From the Gene to Behavior, in Aktual’nye problemy genetiki povedeniya (Current Problems of Behavioral Genetics), Leningrad: Nauka, 1975, pp. 5–21.

    Google Scholar 

  2. Lopatina, N.G. and Ponomarenko, V.V., Investigation of the Genetic Basis of Higher Nervous Activity, in Rukovodstvo po fiziologii: Fiziologiya povedeniya, neirobiologicheskie zakonomernosti (Handbook on Physiology: The Physiology of Behavior: Neurobiological Mechanisms), Leningrad: Nauka, 1987, pp. 9–59.

    Google Scholar 

  3. Kamyshev, N.G., Longevity and Its Relation to the Locomotor Activity in Tryptophan-Ommochromes, Dokl. Akad. Nauk SSSR, 1980, vol. 25, no. 6, pp. 1476–1480.

    Google Scholar 

  4. Savvateeva, E., Kynurenines in the Regulation of Behavior in Insects, in Advances in Experimental Medicine and Biology, vol. 294: Kynurenine and Serotonin Pathways: Progress in Tryptophan Research, Schwarcz, R., Ed., New York: Plenum, 1991, pp. 319–328.

    Google Scholar 

  5. Lopatina, N.G., Chesnokova, E.G., Smirnov, V.B., et al., Kynurenine Pathway of Tryptophan Metabolism and Its Significance in Insect Neurophysiology, Entomol. Obozr., 2004, vol. 83, no. 1, pp. 3–22.

    Google Scholar 

  6. Lapin, I.P., Kynurenine Pathway of Tryptophan Metabolism and Its Role in the Nervous System Function and in the Action of Psychiatric Drugs, Zh. Vses. Khim. O-va im D.I. Mendeleeva, 1976, vol. 21, no. 2, pp. 151–157.

    CAS  Google Scholar 

  7. Schwarcz, R. and Pellieciari, R., Manipulation of Brain Kynurenines: Glial Targets, Neuronal Effects and Clinical Opportunities, J. Pharmacol. Exp. Ther., 2002, vol. 303, no. 1, pp. 1–10.

    Article  PubMed  CAS  Google Scholar 

  8. Lopatina, N.G., Dmitrieva, L.A., Ponomarenko, V.V., and Chesnokova, E.G., The gene snow and Its Role in the Honey Bee’s (Apis mellifera L.) Nervous System and Behavioral Functions Regulation, Russ. J. Genet., 1994, vol. 30, no. 1, pp. 128–134.

    Google Scholar 

  9. Lin, Y., Skeberdis, V., Francesconi, A., et al., Postsynaptic Density Protein-95 Regulates NMDA Channel Gating and Surface Expression, J. Neurosci., 2004, vol. 24, no. 45, pp. 10138–10148.

    Article  PubMed  CAS  Google Scholar 

  10. Ang, L.-H., Chen, W., Yao, Y., et al., Limkinase Regulates the Development of Olfactory and Neuromuscular Synapses, Dev. Biol., 2006, vol. 293, pp. 178–190.

    Article  PubMed  CAS  Google Scholar 

  11. Dillon, Ch. and Goda, Y., The Actin Cytoskeleton: Integrating Form and Function at the Synapse, Annu. Rev. Neurosci., 2005, vol. 28, pp. 25–56.

    Article  PubMed  CAS  Google Scholar 

  12. Lopatina, N.G., Ryzhova, I.V., Dmitrieva, L.A., et al., NMDA Receptors in the Central Nervous System of the Honey Bee with Kynurenine Deficiency, Ross. Fiziol. Zh. im I. M. Sechenova, 2000, vol. 86, no. 10, pp. 1323–1330.

    PubMed  CAS  Google Scholar 

  13. Sheng, M., Molecular Organization of the Postsynaptic Specialization, Proc. Natl. Acad. Sci USA, 2001, vol. 98, no. 13, pp. 7058–7061.

    Article  PubMed  CAS  Google Scholar 

  14. Kaech, S., Brinkhans, H., and Matus, A., Volatile Anesthetics Block Actin-Based Motility in Dendritic Spines, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 10433–10437.

    Article  PubMed  CAS  Google Scholar 

  15. Meng, Y., Zhang, Yu., Tregoubov, V., et al., Abnormal Spine Morphology and Enhanced LTP in LIMK1-Knockout Mice, Neuron, 2002, vol. 35, pp. 121–133.

    Article  PubMed  CAS  Google Scholar 

  16. Alkondon, M., Pereira, E., Yu, P., et al., Targeted Deletion of the Kynurenine Aminotransferase II Gene Reveals a Critical Role of Endogenous Kynurenic Acid in the Regulation of Synaptic Transmission via 7 Nicotinic Receptors in the Hippocampus, J. Neurosci., 2004, vol. 24, no. 19, pp. 4635–4648.

    Article  PubMed  CAS  Google Scholar 

  17. Yu, P., Mosbrook., Tagle, D., Genomic Organization and Expression Analysis of Mouse Kynurenine Aminotransferase II, a Possible Factor in the Pathophysiology of Huntington’s Disease, Mamm. Genome, 1999, vol. 10, pp. 845–852.

    Article  PubMed  CAS  Google Scholar 

  18. Kapoor, V., Kapoor, R., and Chalnus, V., Kynurenic Acid, an Endogenous Glutamate Antagonist, in SHR and WKY Rats: Possible Role in Central Blood Pressure Regulation, Clin. Exp. Pharmacol. Physiol., 1994, vol. 21, no. 11, pp. 891–896.

    Article  PubMed  CAS  Google Scholar 

  19. Erhardt, S., Blennow, K., Nordin, C., et al., Kynurenic Acid Levels Are Elevated in the Cerebrospinal Fluid of Patients with Schizophrenia, Neurosci. Lett., 2001, vol. 313, pp. 96–98.

    Article  PubMed  CAS  Google Scholar 

  20. Schwarcz, R., Rassoulpour, A., Wu, H.-Q., et al., Increased Cortical Kinurenate Content in Schizophrenia, Biol. Psych., 2001, vol. 50, pp. 521–530.

    Article  CAS  Google Scholar 

  21. Poeggeler, B., Rassoulpour, P., Guidetti, H.-G., et al., Dopaminergic Control of Kynurenate Levels and NMDA Toxicity in the Developing Rat Striatum, Dev. Neurosci., 1998, vol. 20, pp. 146–153.

    Article  PubMed  CAS  Google Scholar 

  22. Sapko, M., Guidetti, P., Yu, P., et al., Endogenous Kynurenate Controls the Vulnerability of Striated Neurons to Quinolinate: Implications for Huntington’s Disease, Exp. Neurol., 2006, vol. 197, no. 1, pp. 31–40.

    Article  PubMed  CAS  Google Scholar 

  23. Yu, P., Di Prospero, N., Sapko, M., et al., Biochemical and Phenotypic Abnormalities in Kynurenine Aminotransferase II-Deficient Mice, Mol. Cell. Biol., 2004, vol. 24, no. 16, pp. 6919–6930.

    Article  PubMed  CAS  Google Scholar 

  24. Savvateeva, E.V., Popov, A.V., Kamyshev, N.G., et al., Age-Dependent Changes in Memory and Mushroom Bodies in the Drosophila Mutant vermilion Deficient in the Kynurenine Pathway of Tryptophan Metabolism, Ross. Fiziol. Zh. im I.M. Sechenova, 1999, vol. 85, pp. 167–183.

    PubMed  CAS  Google Scholar 

  25. Menzel, R., Searching for the Memory Trace in a Mini-Brain the Honeybee, Learn. Mem., 2001, vol. 8, no. 2, pp. 53–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Lopatina.

Additional information

Original Russian Text © N.G. Lopatina, T.G. Zachepilo, E.G. Chesnokova, E.V. Savvateeva-Popova, 2007, published in Genetika, 2007, Vol. 43, No. 10, pp. 1396–1401.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopatina, N.G., Zachepilo, T.G., Chesnokova, E.G. et al. Mutations in structural genes of tryptophan metabolic enzymes of the kynurenine pathway modulate some units of the L-glutamate receptor-actin cytoskeleton signaling cascade. Russ J Genet 43, 1168–1172 (2007). https://doi.org/10.1134/S1022795407100110

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407100110

Keywords

Navigation