Skip to main content
Log in

Removing endosymbiotic Wolbachia specifically decreases lifespan of females and competitiveness in a laboratory strain of Drosophila melanogaster

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

To understand specific symbiotic relationships ensuring stable existing of the bacterium Wolbachia in laboratory strains of Drosophila melanogaster, the imago lifespan and senescence rate, as well as competitiveness, have been evaluated as components of fitness in females from the following laboratory strains: (1) inbred strain 95 infected with Wolbachia; (2) two uninfected strains obtained by tetracycline treatment that were genetically similar to strain 95; and (3) two control, uninfected, wild-type laboratory strains that were used to assess the possible effects of the antibiotic on the studied characters in the absence of Wolbachia. The results have shown that infected females have longer lifespan and competitiveness than females with the same genotype uninfected with Wolbachia. The increase in the senescence and mortality rates with age was also slower in infected females. It is noteworthy that tetracycline does not affect the lifespan of females from the two control, uninfected, wild-type strains. Therefore, the antibiotic is not the cause of the positive changes in fitness that were observed in infected females. The obtained results are the first direct evidence that the relationships in the Wolbachia-D. melanogaster symbiotic system are mutualistic rather than parasitic, at least in micropopulations adapted to laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Summer, J.W., Storch, G.A., Buller, R.S., et al., PCR Amplification and Phylogenetic Analysis of GroESL Oregon Sequences from Ehrlichia ewengii and Ehrlichia muris, J. Clin. Microbiol., 2000, vol. 38, pp. 2746–2749.

    Google Scholar 

  2. Dumler, J.S., Barbet, A.F., Bekker, C.P., et al., Reorganization of Genera in the Families Rickettsiaceae and Anaplasmataceae in the Order Rickettsiales: Unification of Some Species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia: Descriptions of Six New Species Combinations and Designation of Ehrlichia equi and “HGE Agent” as Subjective Synonyms of Ehrlichia phagocytophilum, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 2145–2165.

    PubMed  CAS  Google Scholar 

  3. Taillardat-Bisch, A.-V., Rault, D., and Drancourt, M., RNA Polymerase β-Subunit-Based Phylogeny of Ehrlichia spp., Anaplasma spp., Neorickettsia spp. and Wolbachia pipientis, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 455–458.

    Article  PubMed  CAS  Google Scholar 

  4. Jeyaprakash, A. and Hoy, M.A., Long PCR Improves Wolbachia DNA Amplification: wsp Sequences Found in 76% of Sixty-three Arthropod Species, Insect Mol. Biol., 2000, vol. 9, pp. 393–405.

    Article  PubMed  CAS  Google Scholar 

  5. Werren, J.H. and Windsor, D.M., Wolbachia Infection Frequencies in Insects: Evidence for a Global Equilibrium?, Proc. R. Soc. London B, 2000, vol. 267, pp. 1277–1285.

    Article  CAS  Google Scholar 

  6. Jiggins, F.M., Bentley, J.K., Majerus, M.E.N., and Hurst, G.D.D., How Many Species Are Infected with Wolbachia? Cryptic Sex Ratio Distorters Revealed to Be Common by Intensive Sampling, Proc. R. Soc. London B, 2001, vol. 268, pp. 1123–1126.

    Article  CAS  Google Scholar 

  7. Stouthamer, R., Breeuwer, A.J., and Hurst, G.D.D., Wolbachia pipientis: Microbial Manipulator of Arthropod Reproduction, Annu. Rev. Microbiol., 1999, vol. 53, pp. 71–102.

    Article  PubMed  CAS  Google Scholar 

  8. Charlat, S., Hurst, G.D.D., and Mercot, H., Evolutionary Consequences of Wolbachia Infections, Genetics, 2003, vol. 19, no. 4, pp. 217–223.

    CAS  Google Scholar 

  9. Hoffmann, A.A., Hercus, M., and Dagher, H., Population Dynamics of the Wolbachia Infection Causing Cytoplasmic Incompatibility in Drosophila melanogaster, Genetics, 1998, vol. 148, pp. 221–231.

    PubMed  CAS  Google Scholar 

  10. Clark, M.E., Anderson, C.L., Cande, J., and Karr, T.L., Widespread Prevalence of Wolbachia in Laboratory Stocks and Implications for Drosophila Research, Genetics, 2005, vol. 170, pp. 1667–1675.

    Article  PubMed  Google Scholar 

  11. Clark, M.E. and Karr, T.L., Distribution of Wolbachia within Drosophila Reproductive Tissues: Implications for the Expression of Cytoplasmic Incompatibility, Integr. Comp. Biol., 2002, vol. 42, pp. 332–339.

    Article  Google Scholar 

  12. Reynolds, K.T. and Hoffmann, A.A., Male Age, Host Effects and the Weak Expression or Non-Expression of Cytoplasmic Incompatibility in Drosophila Strains Infected by Maternally Transmitted Wolbachia, Genet. Res., 2002, vol. 80, pp. 79–87.

    Article  PubMed  Google Scholar 

  13. Werren, J.H., Wolbachia Run Amok, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 11154–11155.

    Article  PubMed  CAS  Google Scholar 

  14. Min, K.-T. and Benzer, S., Wolbachia, Normally a Symbiont of Drosophila, Can Be Virulent, Causing Degeneration and Early Death, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 10792–10796.

    Article  PubMed  CAS  Google Scholar 

  15. Olsen, K., Reynolds, T., and Hoffmann, A.A., A Field Cage Test of the Effects of the Endosymbiont Wolbachia on Drosophila melanogaster, Heredity, 2001, vol. 86, pp. 1–7.

    Article  Google Scholar 

  16. Fry, A.J. and Rand, D.M., Wolbachia Interactions that Determine Drosophila melanogaster Survival, Evolution, 2002, vol. 56, no. 10, pp. 1976–1981.

    PubMed  Google Scholar 

  17. Fry, A.J., Palmer, M.R., and Rand, D.M., Variable Fitness Effects of Wolbachia Infection in Drosophila melanogaster, Heredity, 2003, vol. 93, pp. 379–389.

    Article  Google Scholar 

  18. Dedeine, F., Vavre, F., Fleury, F., et al., Removing Symbiotic Wolbachia Bacteria Specifically Inhibits Oogenesis in a Parasitic Wasp, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 6247–6252.

    Article  PubMed  CAS  Google Scholar 

  19. Braig, H.R., Zhou, W., Dobson, I.L., and O’Neil, I.L., Cloning and Characterization of a Gene Encoding the Major Surface Protein of the Bacterial Endosymbiont Wolbachia pipientis, J. Bacteriol., 1998, vol. 180, pp. 2373–2378.

    PubMed  CAS  Google Scholar 

  20. Bashkirov, V.N., Krutovskii, K.V., and Kakpakov, V.T., Population Genetic Study of Drosophila melanogaster from the Seychelles: Allozyme Allele Frequency and Morphological and Physiological Traits, Dokl. Akad. Nauk SSSR, 1987, vol. 292, no. 1, pp. 215–220.

    PubMed  CAS  Google Scholar 

  21. Starr, D.J. and Cline, T.W., A Host-Parasite Interaction Rescues Drosophila Oogenesis Defects, Nature, 2002, vol. 418, no. 4, pp. 76–79.

    Article  PubMed  CAS  Google Scholar 

  22. Jungen, H. and Hartl, D.L., Average Fitness of Populations of Drosophila melanogaster as Estimated Using Compound Autosome Strain, Evolution, 1979, vol. 33, pp. 359–370.

    Article  Google Scholar 

  23. Haymer, D.S. and Hartl, D.L., The Experimental Assessment of Fitness in Drosophila: 1. Comparative Measures of Competitive Reproductive Success, Genetics, 1982, vol. 102, pp. 455–466.

    PubMed  Google Scholar 

  24. Clarke, J.M. and Smith, J.M., The Genetics and Cytology of Drosophila subobscura: XI. Hybrid Vigour and Longevity, J. Genet., 1955, vol. 53, pp. 172–180.

    Article  Google Scholar 

  25. Drummel, T., Ching, A., Seroude, L., et al., Drosophila Lifespan Enhancement by Exogenous Bacteria, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 35, pp. 12974–12979.

    Article  Google Scholar 

  26. Altukhov Yu.P., Allozyme Heterozygosity, Sexual Maturation Rate and Longevity, Russ. J. Genet., 1998, vol. 34, no 7, pp. 751–760.

    CAS  Google Scholar 

  27. Pletcher, S.D. and Curtsinger, J.W., Mortality Plateaus and the Evolution of Senescence: Why Are Old-Age Mortality Rates So Low?, Evolution, 1998, vol. 52, pp. 454–464.

    Article  Google Scholar 

  28. Khazaeli, A.A. and Curtsinger, J.W., Genetic Analysis of Extended Lifespan in Drosophila melanogaster: III. On the Relationship between Artificially Selected and Wild Stocks, Genetics, 2000, vol. 109, pp. 245–253.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Goryacheva.

Additional information

Original Russian Text © I.D. Alexandrov, M.V. Alexandrova, I.I. Goryacheva, N.V. Rochina, E.V. Shaikevich, I.A. Zakharov, 2007, published in Genetika, 2007, Vol. 43, No. 10, pp. 1372–1378.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, I.D., Alexandrova, M.V., Goryacheva, I.I. et al. Removing endosymbiotic Wolbachia specifically decreases lifespan of females and competitiveness in a laboratory strain of Drosophila melanogaster . Russ J Genet 43, 1147–1152 (2007). https://doi.org/10.1134/S1022795407100080

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407100080

Keywords

Navigation