Skip to main content
Log in

Stress, chemocommunication, and the physiological hypothesis of mutation

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review considers stress as a physiological state of the organism, affecting the cellular, genomic, and population levels. Literature data and cytogenetic studies by the author support basic statements of the physiological hypothesis of mutation, which was advanced as early as in the 1940s. Studies of pheromonal effects in germline and somatic cells of the house mouse demonstrated the role of olfactory stressors in generating genetic variation in microevolutionary changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selye, H., Syndrome Produced by Diverse Nocuous Agents, Nature, 1936, vol. 138, p. 32.

    Google Scholar 

  2. Waisel, Y., Epilogue, Bielefeld. Ökol. Beitr., 1992, vol. 6, p. 115.

    Google Scholar 

  3. Selye, H., The Story of the Adaptation Syndrome, Montreal: Acta Medical, 1952.

    Google Scholar 

  4. Selye, H. Na urovne tselogo organizma (At the Level of the Whole Body), Moscow: Nauka, 1972.

    Google Scholar 

  5. Selye, H., Stress without Distress, New York: New American Library, 1974.

    Google Scholar 

  6. Selye, H., The Physiology and Pathology of Exposure to Stress, Montreal: Acta Medical, 1950, p. 203.

    Google Scholar 

  7. Arshavskii, I.A., Mechanisms and Characteristics of Physiological and Pathological Stress at Different Ages, in Aktual’nye problemy stressa (Current Problems of Stress), Kishinev: Shtiintsa, 1976, pp. 5–23.

    Google Scholar 

  8. Kakhana, M.S., Mel’nik, B.E., and Robu, A.I., The Role of Hypothalamic Endocrine Interrelations during Variable Stress Reactions, in Aktual’nye problemy stressa (Current Problems of Stress), Kishinev: Shtiintsa, 1976, pp. 115–124.

    Google Scholar 

  9. Pogodaev, K.I., On the Biological Basis of “Stress” and “Adaptation Syndrome,” in Aktual’nye problemy stressa (Current Problems of Stress), Kishinev: Shtiintsa, 1976, pp. 211–229.

    Google Scholar 

  10. Sovremennye kontseptsii evolyutsionnoi genetiki (Current Concepts of Evolutionary Genetics), Shumnyi, V.K. and Markel’, A.L., Eds., Novosibirsk: Inst. Tsitologii i Genetiki, Sib. Otd., Ross. Akad.Nauk, 2000.

    Google Scholar 

  11. Osnovy neiroendokrinologii (Basics of Neuroendocrinology), Shalyapina, V.G. and Shabanov, P.D., Eds., St. Petersburg: Elbi-SPb, 2005.

    Google Scholar 

  12. Stress-Inducible Processes in Higher Eukaryotic Cells, Koval, T.M., Ed., New York: Plenum, 1997.

    Google Scholar 

  13. Nikulina, E.M., Miczek, K.A., and Hammer, R.P., Prolonged Effects of Repeated Social Defeat Stress on mRNA Expression and Function of m-Opioid Receptors in the Ventral Tegmental Area of Rats, Neuropsychopharmacology, 2005, vol. 30, no. 6, pp. 1096–1103.

    Article  PubMed  CAS  Google Scholar 

  14. Margulis, B.A. and Guzhova, I.V., Stress Proteins in Eukaryotic Cell, Tsitologiya, 2000, vol. 42, no. 4, pp. 323–342.

    CAS  Google Scholar 

  15. Soti, C., Pal, C., Papp, B., and Csermely, P., Molecular Chaperones as Regulatory Elements of Cellular Networks, Curr. Opin. Cell Biol., 2005, vol. 17, no. 2, pp. 210–215.

    Article  PubMed  CAS  Google Scholar 

  16. Baraboi, V.A., Brekhman, I.I., Golotin, V.G., and Kudryashov, Yu.B., Perekisnoe okislenie i stress (Peroxide Oxidation and Stress), St. Petersburg: Nauka, 1992.

    Google Scholar 

  17. Clem, R.J., Apoptosis as a Stress Response: Lessons from an Insect Virus, in Stress-Inducible Processes in Higher Eukaryotic Cells, Koval, T.M., Ed., New York: Plenum, 1997, pp. 109–136.

    Google Scholar 

  18. Schuler, M. and Green, D.R., Mechanisms of p53-Dependent Apoptosis, Biochem. Soc. Trans., 2001, vol. 29, no. 6, pp. 684–688.

    Article  PubMed  CAS  Google Scholar 

  19. Ben-Porath, I. and Weinberg, R.A., The Signals and Pathways Activating Cellular Senescence, Int. J. Biochem. Cell Biol., 2005, vol. 37, no. 5, pp. 961–976.

    Article  PubMed  CAS  Google Scholar 

  20. Liu, Y.F., Bertram, K., Perides, G., et al., Stress Induces Activation of Stress-Activated Kinases in the Mouse Brain, J. Neurochem., 2004, vol. 89, pp. 1034–1043.

    Article  PubMed  CAS  Google Scholar 

  21. McClintock, B., The Significance of Responses of the Genome to Challenge, Science, 1984, vol. 226, no. 4 676, pp. 792–801.

    Article  PubMed  CAS  Google Scholar 

  22. Velkov, V.V., New Insights into the Molecular Mechanisms of Evolution: Stress Increases Genetic Diversity, Izv. Akad. Nauk SSSR, Ser. Biol., 2002, vol. 36, no. 2, pp. 277–286.

    CAS  Google Scholar 

  23. de La, Serna I.L., Carlson, K.A., Hill, D.A., et al., Mammalian SWI-SNF Complexes Contribute To Activation of the hsp70 Gene, Mol. Cell Biol., 2000, vol. 8, pp. 2839–2851.

    Google Scholar 

  24. Rahman, I., Marwick, J., and Kirkham, P., Redox Modulation of Chromatin Remodeling: Impact on Histone Acetylation and Deacetylation, NF-KappaB and Pro-Inflammatory Gene Expression, Biochem. Pharmacol., 2004, vol. 68, no. 6, pp. 1255–1267.

    Article  PubMed  CAS  Google Scholar 

  25. Zhan, Q., Gadd45a, a P53-and BRCA1-Regulated Stress Protein, in Cellular Response to DNA Damage, Mutat. Res., 2005, vol. 569, nos. 1–2, pp. 133–143.

    PubMed  CAS  Google Scholar 

  26. Liu, J., Wang, X., Shigenaga, M.K., et al., Immobilization Stress Causes Oxidative Damage to Lipid, Protein, and DNA in the Brain of Rats, FASEB J., 1996, vol. 10, pp. 1532–1538.

    PubMed  CAS  Google Scholar 

  27. Limoli, C.L., Hartmann, A., Shephard, L., et al., Apoptosis, Reproductive Failure, and Oxidative Stress in Chinese Hamster Ovary Cells with Compromised Genomic Integrity, Cancer Res., 1998, vol. 58, pp. 3712–3718.

    PubMed  CAS  Google Scholar 

  28. Twigg, J., Fulton, N., Gomez, E., et al., Analysis of the Impact of Intracellular Reactive Oxygen Species Generation on the Structural and Functional Integrity of Human Spermatozoa: Lipid Peroxidation, DNA Fragmentation and Effectiveness of Antioxidants, Hum. Reprod., 1998, vol. 13, pp. 1429–1436.

    Article  PubMed  CAS  Google Scholar 

  29. Borodin, P.M. and Belyaev, D.K., Effect of Stress on Frequency of Crossingover in the 2nd Chromosome of Domestic Mouse, Dokl. Akad. Nauk SSSR, 1980, vol. 253, no. 3, pp. 727–729.

    PubMed  CAS  Google Scholar 

  30. Dyuzhikova, N.A., Savenko, Yu.N., Vaido, A.I., and Lopatina, N.G., Changes in Heterochromatin Conformation Play a Triggering Role in Long-Term Modification in Hippocampal Neurons of Rats with Different Characteristics of the Nervous System Excitability during Post-traumatic Stress, Ekol. Kul’tura Obr., 2003, nos. 10–11, pp. 67–68.

  31. Opol’skii, A.F., The Influence of Hypothalamus on the Mutagenesis in Animal Somatic Cells, in Chuvstvitel’nost’ organizmov k mutagennym faktoram i vozniknovenie mutatsii (Sensitivity of Organisms to Mutagenic Factors and the Appearence of Mutations), Vilnius: Izd. Vilnius Gos. Univ., 1982, pp. 20–21.

    Google Scholar 

  32. Seredenin, S.B., Durnev, A.D., and Vedernikova, A.A., The Effect of Emotional Stress on the Chromosome Aberration Frequency in Mouse Bone Marrow Cells, Byull. Exp. Biol. Med., 1980, no. 7, pp. 91–92.

  33. Fischman, H.K. and Kelly, D.D., Chromosomes and Stress, Int. J. Neurosci., 1999, vol. 99, pp. 201–219.

    Article  PubMed  CAS  Google Scholar 

  34. Fischman, H.K., Pero, R.W., and Kelly, D.D., Psychogenic Stress Induces Chromosomal and DNA Damage, Int. J. Neurosci., 1996, vol. 84, pp. 219–227.

    PubMed  CAS  Google Scholar 

  35. Hunt, C.R., Sim, J.E., Sullivan, S.J., et al., Genomic Instability and Catalase Gene Amplification Induced by Chronic Exposure to Oxidative Stress, Cancer Res., 1998, vol. 58, pp. 3986–3992.

    PubMed  CAS  Google Scholar 

  36. Umegaki, K., Higuchi, M., Inoue, K., and Esashi, T., Influence of One Bout of Intensive Running on Lymphocyte Micronucleus Frequencies in Endurance-Trained and Untrained Men, Int. J. Sports Med., 1998, vol. 19, pp. 581–585.

    Article  PubMed  CAS  Google Scholar 

  37. Ingel, F.I., Perspectives of Micronuclear Test Application to Human Blood Lymphocytes, Cultivated in the Condition of Cytokinetic Block, Ekol. Genet., 2006, vol. 4, no. 3, pp. 7–19.

    Google Scholar 

  38. Kaidanov, L.Z., Genetika populyatsii (Genetics of Populations), Moscow: Vysshaya Shkola, 1996.

    Google Scholar 

  39. Schmidt, A.L. and Anderson, L.M., Repetitive DNA Elements as Mediators of Genomic Change in Response to Environmental Cues, Biol. Rev., 2006, vol. 81, pp. 531–543.

    Article  PubMed  Google Scholar 

  40. Lobashev, M.E., Physiological (Paranecrotic) Hypothesis of the Mutation Process, Vestn. Leningr. Univ., 1947, no. 8, pp. 10–29.

  41. Kerkis, Yu.Ya. and Skorova, S.V., On the Factors, Controlling Intensity of Spontaneous Mutation Process, Inf. Byull. Nauchn. Sov. Probl. Radiobiol., 1977, no. 20, pp. 51–52.

  42. Lieber, M.M., Environmentally Responsive Mutator Systems: Toward a Unifying Perspective, Rev. Biol., 1998, vol. 91, pp. 425–457.

    CAS  Google Scholar 

  43. Zakharov, I.K., Yurchenko, N.N., Ivannikov, A.V., et al., Mutation Outbreaks and Transposons in Natural Populations of Drosophila melanogaster, Inf. Vestn. VOGiS, 2001, no. 16, pp. 10–12.

  44. Menichini, P., Viaggi, S., Gallerani, E., et al., A Gene Trap Approach to Isolate Mammalian Genes Involved in the Cellular Response to Genotoxic Stress, Nucleic Acids Res., 1997, vol. 25, pp. 4803–4807.

    Article  PubMed  CAS  Google Scholar 

  45. Shackelford, R.E., Kaufmann, W.K., and Paules, R.S., Cell Cycle Control, Checkpoint Mechanisms, and Genotoxic Stress, Env. Health Persp., 1999, vol. 107, pp. 5–24.

    Article  CAS  Google Scholar 

  46. Scolnick, D.M. and Halazonetis, T.D., Chfr Defines a Mitotic Stress Checkpoint That Delays Entry into Metaphase, Nature, 2000, vol. 406, pp. 430–435.

    Article  PubMed  CAS  Google Scholar 

  47. Naumenko, E.V., Osadchuk, A.V., Serova, L.I., and Shishkina, G.T., Genetiko-fiziologicheskie mekhanizmy regulyatsii funktsii semennikov (Genetic Physiological Mechanisms of Regulation of Testicle Function), Novosibirsk: Nauka, 1983.

    Google Scholar 

  48. Hendrichs, H., On Social Stress in Mammals, Bielefeld. Okol. Beitr., 1992, vol. 6, pp. 105–110.

    Google Scholar 

  49. Breckle, S.-W., Salinity-Stress and Salt Recreation in Plants, Bielefeld. Ökol. Beitr., 1992, vol. 6, pp. 39–52.

    Google Scholar 

  50. Kruuk, L.E., Clutton-Brock, T.H., Albon, S.D., et al., Population Density Affects Sex Ratio Variation in Red Deer, Nature, 1999, vol. 399, pp. 459–461.

    Article  PubMed  CAS  Google Scholar 

  51. Christian, J.J., The Adrenalo-Pituitary System and Population Cycles in Mammals, J. Mammal., 1950, vol. 31, pp. 247–259.

    Article  Google Scholar 

  52. Christian, J.J., Phenomena Associated with Population Density, Proc. Natl. Acad. Sci. USA, 1961, vol. 47, pp. 428–449.

    Article  PubMed  CAS  Google Scholar 

  53. Christian, J.J., Population Density and Reproductive Efficiency, Biol. Reprod., 1971, vol. 4, pp. 248–294.

    PubMed  CAS  Google Scholar 

  54. Chitty, D., Population Processes in Vole and Their Relevance to General Theory, Can. J. Zool., 1960, vol. 38, pp. 99–113.

    Article  Google Scholar 

  55. Chitty, D., The Natural Selection of Self-Regulating Behaviour in Animal Populations, Proc. Ecol. Soc. Aust., 1967, vol. 2, pp. 51–78.

    Google Scholar 

  56. Lee, A.K. and McDonald, I.R., Stress and Population Regulation in Small Mammals, Oxford Rev. Reprod. Biol., 1985, vol. 7, pp. 261–304.

    CAS  Google Scholar 

  57. Kerkis, Yu.Ya., Physiological Changes in the Cell as a Cause of Mutation, Usp. Sovrem. Biol., 1940, no. 1, pp. 344–350.

  58. Khromov-Borisov, N.N., Physiological Theory of Mutation Process a Quarter of a Century Later, in Issledovaniya po genetike (Research in Genetics), Leningrad: Leningr. Gos. Univ., 1976, issue 6, pp. 16–31.

    Google Scholar 

  59. Kamyshev, N.G., Savvateeva, E.V., and Ponomarenko, V.V., About Neurohormonal Factors in Regulation of Genetic and Cytogenetic Processes, in Fiziologicheskaya genetika i genetika povedeniya (Physiological Genetics and Behavioral Genetics), Leningrad: Nauka, 1981.

    Google Scholar 

  60. Lobashev, M.E., Ponomarenko, V.V., Polyanskaya, G.G., and Tsapygina, R.I., On the Role of the Nervous System in Regulating a Variety of Genetic and Cytogenetic Processes, Zh. Evol. Biokhim. Fiziol., 1973, vol. 9, no. 4, pp. 396–406.

    Google Scholar 

  61. Lopatina, N.G., Ponomarenko, V.V., and Smirnova, G.P., Hypothesis of Nervous Regulation of the Process of Genetic Information Realization, in Problemy vysshei nervnoi deyatel’nosti i neirofiziologii (Problems of Higher Nervous Activity and Neurophysiology), Leningrad: Nauka, 1975, pp. 107–121.

    Google Scholar 

  62. Ponomarenko, V.V., Behavioral Genetics, in Fiziologicheskaya genetika (Physiological Genetics), Leningrad: Meditsina, 1976, pp. 350–382.

    Google Scholar 

  63. Tsapygina, R.I., The Study of Induced Chromosome Aberrations in the Mouse Cornea Epithelium in Connection with Functional State of Cerebral Cortex and Mitotic Diurnal Rhythm, in Issledovaniya po genetike (Research in Genetics), Leningrad: Leningr. Gos. Univ., 1974, issue 5, pp. 13–18.

    Google Scholar 

  64. Pimenova, M.N., The Effect of Neuroactive Substances on Cytogenetic Processes in Somatic Cells (Mouse and Human), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Leningrad: Leningr. Gos. Univ., 1975.

    Google Scholar 

  65. Polyanskaya, G.G., The Effect of Sympatectomy on Cytogenetic Processes in the Mice, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Leningrad: Leningr. Gos. Univ., 1971.

    Google Scholar 

  66. Tsapygina, R.I., The Study of the Role of Central Nervous System in the Regulation of Cytogenetic Processes by Means of Conditioned Reflex Method, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Leningrad: Leningr. Gos. Univ., 1972.

    Google Scholar 

  67. Kerkis, Yu.Ya., Osetrova, G.D., Loginova, V.V., et al., Genetic and Physiological (Humoral) Factors, Controlling the Induced and Spontaneous Mutation Process in Mammals, in Problemy teoreticheskoi i prikladnoi genetiki (Problems in Theoretical and Applied Genetics), Novosibirsk, 1973, pp. 75–94.

  68. Vaido, A.I., Dyuzhikova, N.A., Shiryaeva, N.V., et al., Epigenetic Mechanisms of Long-Term Stress Effects, in Genetika v XXI veke: sovremennoe sostoyanie i perspektivy razvitiya (Genetics in the 21st Century: Current State and Prospects of Development) (Proc. III Conference All-Russian Society of Geneticists and Breeders), Moscow, 2004, vol. 1, p. 10.

    Google Scholar 

  69. Tsapygina, R.I., Daev, E.V., and Novikov, S.N., The Effect of Exogenous Metabolites on Cytokinesis in Generative Tissue of Laboratory Animals, in Issledovanie biologicheskogo deistviya antropogennykh faktorov, zagryaznyayushchikh vodoemy (Study of the Biological Effect of Anthropogenic Pollutants of Water Bodies), Irkutsk: Izd. Irkutsk Gos. Univ., 1979, pp. 157–162.

    Google Scholar 

  70. Belyaev, D.K., Destabilizing Selection as a Factor of Variation under Animal Domestication, Priroda, 1979, no. 2, pp. 36–45.

  71. Belyaev, D.K. and Borodin, P.M., The Influence of Stress on Genetic Variation and Its Role in Evolution, in Evolyutsionnaya genetika (Evolutionary Genetics), Leningrad: Leningr. Gos. Univ., 1982, pp. 35–59.

    Google Scholar 

  72. Bruce, H.M., An Exteroceptive Block to Pregnancy in the Mouse, Nature, 1959, vol. 184, p. 105.

    Article  PubMed  CAS  Google Scholar 

  73. Southwick, C.H., Eosinophil Response of C57Br Mice to Behavioral Disturbance, Ecology, 1959, vol. 40, pp. 156–157.

    Article  Google Scholar 

  74. Novikov, S.N., Feromony i Razmnozhenie Mlekopitayushchikh (Pheromones and Reproduction in Mammals), Leningrad: Nauka, 1988.

    Google Scholar 

  75. Brown, R.E., Rodents I: Effects of Odours on Reproductive Physiology (Primer Effects), in Social Odours in Mammals, Brown, R.E. and MacDonald D.W., Eds., Oxford: Claredon, 1985, vol. 1, pp. 245–344.

    Google Scholar 

  76. Jin, B.K., Franzen, L., and Baker, H., Regulation of C-Fos mRNA and fos Protein Expression in Olfactory Bulbs from Unilaterally Odor-Deprived Adult Mice, Int. J. Dev. Neurosci., 1996, vol. 14, pp. 971–982.

    Article  PubMed  CAS  Google Scholar 

  77. Beynon, R.J. and Hurst, J.L., Urinary Proteins and the Modulation of Chemical Scents in Mice and Rats, Peptides, 2004, vol. 25, pp. 1553–1563.

    Article  PubMed  CAS  Google Scholar 

  78. Fiber, J.M. and Swann, J.M., Testosterone Differentially Influences Sex-Specific Pheromone-Stimulated Fos Expression in Limbic Regions of Syrian Hamsters, Horm. Behav., 1996, vol. 30, pp. 455–473.

    Article  PubMed  CAS  Google Scholar 

  79. Halem, H.A., Cherry, J.A., and Baum, M.J., Vomeronasal Neuroepithelium and Forebrain Fos Responses to Male Pheromones in Male and Female Mice, J. Neurobiol., 1999, vol. 39, pp. 249–263.

    Article  PubMed  CAS  Google Scholar 

  80. Dudley, C.A., Rajendren, G., and Moss, R.L., Signal Processing in the Vomeronasal System: Modulation of Sexual Behavior in the Female Rat, Crit. Rev. Neurobiol., 1996, vol. 10, pp. 265–290.

    PubMed  CAS  Google Scholar 

  81. Dlusen, D.E., Ramirez, V.D., Carter, C.S., and Getz, L.L., Male Vole Urine Changes Luteinizing Hormone Releasing Hormone and Norepinephrine in Female Olfactory Bulb, Science, 1981, vol. 212, pp. 573–575.

    Article  Google Scholar 

  82. Singer, A.G., Clancy, A.N., Macrides, F., et al., Chemical Properties of a Female Mouse Pheromone That Stimulates Gonadotropin Secretion in Males, Biol. Reprod., 1988, vol. 38, pp. 193–199.

    Article  PubMed  CAS  Google Scholar 

  83. Daev, E.V., Genetic Consequences of Olfactory Stresses in Mice, Doctoral (Biol.) Dissertation, St. Petersburg: St. Petersb. Gos. Univ., 2006.

    Google Scholar 

  84. Lawton, A.D. and Whitsett, J.M., Inhibition of Sexual Maturation by a Urinary Pheromone in Male Prairie Deer Mice, Horm. Behav., 1979, vol. 13, pp. 128–138.

    Article  PubMed  CAS  Google Scholar 

  85. Pavlova, M.B., Garina, I.A., Dyuzhikova, N.A., et al., Corticosteroid Response and Indolamine Content of the Mouse Brain under the Action of a Pheromone, Disrupting Spermatogenesis, Fiziol. Zh., 1989, vol. 75, pp. 138–142.

    CAS  Google Scholar 

  86. Marois, G., Inhibition of Nidation in Mice by Modification of the Environment and Pheromones: Re-Establishment by Prolactin and Thioproperazine, Ann. Endocrinol., 1982, vol. 43, pp. 41–52.

    CAS  Google Scholar 

  87. Surinov, B.P., Karpova, N.A., Isaeva, V.G., and Kulish, Yu.S., PostStress States and Communicative Disturbances of Immunity and Blood, Patol. Fiziol. Eksp. Terapiya, 2000, no. 4, pp. 9–11.

  88. Surinov, B.P., Karpova, N.A., and Zhovtun, L.P., Olfactory Stress: Immunosupression Dynamics in Mice with Different Genotype, Immunologiya, 2004, no. 3, pp. 183–185.

  89. Cocke, R., Moynihan, J.A., Cohen, N., et al., Exposure to Conspecific Alarm Chemosignals Alters Immune Responses in BALB/c Mice, Brain Behav. Immun., 1993, vol. 7, pp. 36–46.

    Article  PubMed  CAS  Google Scholar 

  90. Moynihan, J.A., Karp, J.D., Cohen, N., and Cocke, R., Alterations in Interleukin-4 and Antibody Production Following Pheromone Exposure: Role of Glucocorticoids, J. Neuroimmunol., 1994, vol. 54, pp. 51–58.

    Article  PubMed  CAS  Google Scholar 

  91. Silver, L.M., Mouse Genetics: Concepts and Applications, New York: Oxford Univ. Press, 1995.

    Google Scholar 

  92. Daev, E.V., The Effect of Exogenous Metabolites on Cytogenetic Characteristics of Spermatogenesis and Reproductive Function in the Male House Mouse, Cand. Sci. (Biol.) Dissertation, Leningrad, 1983.

  93. Daev, E.V., Pheromonal Regulation of Genetic Processes: Research on the House Mouse (Mus musculus L.), Russ. J. Genet., 1994, vol. 30, no. 8, pp. 964–970.

    Google Scholar 

  94. Aref’ev, A.A. and Daev, E.V., Impaired Spermatogenesis in House Mouse after Exposure to Urinary Volatiles of Mature Males, in Atual’nye problemy sovremennoi biologii: Problemy reproduktsii, differentsirovki i funktsionirovaniya kletok (Current Problems of Modern Biology: Problems of Cell Reproduction, Differentiation, and Function), Available from VINITI, 1987, Moscow, no. 3107-B87.

  95. Daev, E.V. and Dukel’skaya, A.V., The Effect of Female Mouse Pheromone 2,5-Dimethylpyrazine on the Reproductive Characteristics of Males S57VL/6 Mice, Ekol. Genet., 2004, vol. 2, no. 1, pp. 44–49.

    Google Scholar 

  96. Daev, E.V., Surinov, B.P., Dukel’skaya, A.V., et al., Immunological, Cytogenetic and Behavior Changes in Male Mice CBA and C57BL/6 Exposed to Pheromone, Zh. Evol. Biokhim. Fiziol., 2005, vol. 41, no. 4, pp. 44–49.

    Google Scholar 

  97. Lenski, R.E. and Mitler, I.E., The Directed Mutation Controversy and Neo-Darwinism, Science, 1993, vol. 259, pp. 188–194.

    Article  PubMed  CAS  Google Scholar 

  98. Tzapigina, R., Aref’ev, A., Sverdlova, O., and Daev, E., Pheromonal Regulation Hypothesis of the Space-Genetic Structure of the House Mouse (Mus musculus L.) Populations, in World Congress of Landscape Ecology, Ottawa: International Association for Landscape Ecology, 1991, p. 84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Daev.

Additional information

Original Russian Text © E.V. Daev, 2007, published in Genetika, 2007, Vol. 43, No. 10, pp. 1299–1310.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daev, E.V. Stress, chemocommunication, and the physiological hypothesis of mutation. Russ J Genet 43, 1082–1092 (2007). https://doi.org/10.1134/S102279540710002X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279540710002X

Keywords

Navigation