Skip to main content
Log in

Posttranslationally modified microcins

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Microcins are antibacterial compounds that are encoded in the bacterial genome and synthesized via ribosomal translation. Microcins play an important role in microbial ecology and are promising as antibiotics. To exert their effect, most microcins are incorporated in the membrane of sensitive cells to increase its permeability. The review considers the known classes of posttranslationally modified microcins. These microcins are unusual in structure and inhibit the grown of sensitive cells by entering their cytoplasm and affecting intracellular targets, such as DNA gyrase, DNA-dependent RNA polymerase, and aspartyl-tRNA synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asensio, C. and Perez-Diaz, J.C., A New Family of Low Molecular Weight Antibiotics from Enterobacteria, Biochem. Biophys. Res. Commun., 1976, vol. 69, pp. 7–14.

    Article  PubMed  CAS  Google Scholar 

  2. Baquero, F., Bouanchaud, D., Martinez-Perez, M.C., and Fernandez, C., Microcin Plasmids: A Group of Extrachromosomal Elements Coding for Low-Molecular-Weight Antibiotics in Escherichia coli, J. Bacteriol., 1978, vol. 135, pp. 342–347.

    PubMed  CAS  Google Scholar 

  3. Davagnino, J., Herrero, M., Furlong, D., et al., The DNA Replication Inhibitor Microcin B17 Is a Forty-Three-Amino-Acid Protein Containing Sixty Percent Glycine, Proteins, 1986, vol. 1, pp. 230–238.

    Article  PubMed  CAS  Google Scholar 

  4. Connell, N., Han, Z., Moreno, F., and Kolter, R., An E. coli Promoter Induced by the Cessation of Growth, Mol. Microbiol., 1987, vol. 1, pp. 195–201.

    Article  PubMed  CAS  Google Scholar 

  5. Genilloud, O., Moreno, F., and Kolter, R., DNA Sequence, Products, and Transcriptional Pattern of the Genes Involved in Production of the DNA Replication Inhibitor Microcin B17, J. Bacteriol., 1989, vol. 171, pp. 1126–1135.

    PubMed  CAS  Google Scholar 

  6. Yorgey, P., Davagnino, J., and Kolter, R., The Maturation Pathway of Microcin B17, a Peptide Inhibitor of DNA Gyrase, Mol. Microbiol., 1993, vol. 9, pp. 897–905.

    Article  PubMed  CAS  Google Scholar 

  7. Yorgey, P., Lee, J., Kordel, J., et al., Posttranslational Modifications in Microcin B17 Define an Additional Class of DNA Gyrase Inhibitor, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 4519–4523.

    Article  PubMed  CAS  Google Scholar 

  8. Kelleher, N.L., Hendrickson, C.L., and Walsh, C.T., Posttranslational Heterocyclization of Cysteine and Serine Residues in the Antibiotic Microcin B17: Distributivity and Directionality, Biochemistry, 1999, vol. 38, pp. 15 623–15 630.

    Article  CAS  Google Scholar 

  9. Gilson, L., Mahanty, H.K., and Kolter, R., Genetic Analysis of an MDR-Like Export System: The Secretion of Colicin V, EMBO J., 1990, vol. 9, pp. 3875–3884.

    PubMed  CAS  Google Scholar 

  10. Garrido, M.C., Herrero, M., Kolter, R., and Moreno, F., The Export of the DNA Replication Inhibitor Microcin B17 Provides Immunity for the Host Cell, EMBO J., 1988, vol. 7, pp. 1853–1862.

    PubMed  CAS  Google Scholar 

  11. Madison, L.L., Vivas, E.I., Li, Y.M., et al., The Leader Peptide Is Essential for the Post-Translational Modification of the DNA-Gyrase Inhibitor Microcin B17, Mol. Microbiol., 1997, vol. 23, pp. 161–168.

    Article  PubMed  CAS  Google Scholar 

  12. Breil, B.T., Ludden, P.W., and Triplett, E.W., DNA Sequence and Mutational Analysis of Genes Involved in the Production and Resistance of the Antibiotic Peptide Trifolitoxin, J. Bacteriol., 1993, vol. 175, pp. 3693–3702.

    PubMed  CAS  Google Scholar 

  13. Liu, J., Microcin B17: Posttranslational Modifications and Their Biological Implications, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 4618–4620.

    Article  PubMed  CAS  Google Scholar 

  14. Lavina, M., Pugsley, A.P., and Moreno, F., Identification, Mapping, Cloning and Characterization of a Gene (sbmA) Required for Microcin B17 Action on Escherichia coli K12, J. Gen. Microbiol., 1986, vol. 132, pp. 1685–1693.

    PubMed  CAS  Google Scholar 

  15. Khmel, I.A., Microcin Peptide Antibiotics of Enterobacteria: Genetic Control of Synthesis, Structure, and Mode of Action, Russ. J. Genet., 1999, vol. 35, no. 1, pp. 1–10.

    CAS  Google Scholar 

  16. Pierrat, O.A. and Maxwell, A., The Action of the Bacterial Toxin Microcin B17. Insight into the Cleavage-Religation Reaction of DNA Gyrase, J. Biol. Chem., 2003, vol. 278, pp. 35 016–35 023.

    Article  CAS  Google Scholar 

  17. Vizan, J.L., Hernandez-Chico, C., del C. I, and Moreno, F., The Peptide Antibiotic Microcin B17 Induces Double-Strand Cleavage of DNA Mediated by E. coli DNA Gyrase, EMBO J., 1991, vol. 10, pp. 467–476.

    PubMed  CAS  Google Scholar 

  18. Del Castillo, F.J., del C. I., and Moreno, F., Construction and Characterization of Mutations at Codon 751 of the Escherichia coli gyrB Gene that Confer Resistance to the Antimicrobial Peptide Microcin B17 and Alter the Activity of DNA Gyrase, J. Bacteriol., 2001, vol. 183, pp. 2137–2140.

    Article  PubMed  Google Scholar 

  19. Kim, O.K., Ohemeng, K., and Barrett, J.F., Advances in DNA Gyrase Inhibitors, Expert. Opin. Invest. Drugs, 2001, vol. 10, pp. 199–212.

    Article  CAS  Google Scholar 

  20. Pierrat, O.A. and Maxwell, A., Evidence for the Role of DNA Strand Passage in the Mechanism of Action of Microcin B17 on DNA Gyrase, Biochemistry, 2005, vol. 44, pp. 4204–4215.

    Article  PubMed  CAS  Google Scholar 

  21. Zamble, D.B., Miller, D.A., Heddle, J.G., et al., In Vitro Characterization of DNA Gyrase Inhibition by Microcin B17 Analogs with Altered Bisheterocyclic Sites, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 7712–7717.

    Article  PubMed  CAS  Google Scholar 

  22. Blond, A., Peduzzi, J., Goulard, C., et al., The Cyclic Structure of Microcin J25, a 21-Residue Peptide Antibiotic from Escherichia coli, Eur. J. Biochem., 1999, vol. 259, pp. 747–755.

    Article  PubMed  CAS  Google Scholar 

  23. Salomon, R.A. and Farias, R.N., Microcin 25, a Novel Antimicrobial Peptide Produced by Escherichia coli, J. Bacteriol., 1992, vol. 174, pp. 7428–7435.

    PubMed  CAS  Google Scholar 

  24. Solbiati, J.O., Ciaccio, M., Farias, R.N., and Salomon, R.A., Genetic Analysis of Plasmid Determinants for Microcin J25 Production and Immunity, J. Bacteriol., 1996, vol. 178, pp. 3661–3663.

    PubMed  CAS  Google Scholar 

  25. Wilson, K.A., Kalkum, M., Ottesen, J., et al., Structure of Microcin J25, a Peptide Inhibitor of Bacterial RNA Polymerase, Is a Lassoed Tail, J. Am. Chem. Soc., 2003, vol. 125, pp. 12 475–12 483.

    CAS  Google Scholar 

  26. Rosengren, K.J., Clark, R.J., Daly, N.L., et al., Microcin J25 Has a Threaded Sidechain-to-Backbone Ring Structure and Not a Head-to-Tail Cyclized Backbone, J. Am. Chem. Soc., 2003, vol. 125, pp. 12 464–12 474.

    Article  CAS  Google Scholar 

  27. Bayro, M.J., Mukhopadhyay, J., Swapna, G.V., et al., Structure of Antibacterial Peptide Microcin J25: A 21-Residue Lariat Protoknot, J. Am. Chem. Soc., 2003, vol. 125, pp. 12 382–12 383.

    Article  CAS  Google Scholar 

  28. Rosengren, K.J., Blond, A., Afonso, C., et al., Structure of Thermolysin Cleaved Microcin J25: Extreme Stability of a Two-Chain Antimicrobial Peptide Devoid of Covalent Links, Biochemistry, 2004, vol. 43, pp. 4696–4702.

    Article  PubMed  CAS  Google Scholar 

  29. Rebuffat, S., Blond, A., Stoumieux-Garzon, D., et al., Microcin J25, from the Macrocyclic to the Lasso Structure: Implications for Biosynthetic, Evolutionary and Biotechnological Perspectives, Curr. Protein. Pept. Sci., 2004, vol. 5, pp. 383–391.

    Article  PubMed  CAS  Google Scholar 

  30. Solbiati, J.O., Ciaccio, M., Farias, R.N., et al., Sequence Analysis of the Four Plasmid Genes Required to Produce the Circular Peptide Antibiotic Microcin J25, J. Bacteriol., 1999, vol. 181, pp. 2659–2662.

    PubMed  CAS  Google Scholar 

  31. Delgado, M.A., Vincent, P.A., Farias, R.N., and Salomon, R.A., YojI of Escherichia coli Functions as a Microcin J25 Efflux Pump, J. Bacteriol., 2005, vol. 187, pp. 3465–3470.

    Article  PubMed  CAS  Google Scholar 

  32. Salomon, R.A. and Farias, R.N., The FhuA Protein Is Involved in Microcin 25 Uptake, J. Bacteriol., 1993, vol. 175, pp. 7741–7742.

    PubMed  CAS  Google Scholar 

  33. Destoumieux-Garzón, D., Duquesne, S., Peduzzi, J., et al., The Iron-Siderophore Transporter FhuA Is the Receptor for the Antimicrobial Peptide Microcin J25: Role of the Microcin Val11-Pro16 β-Hairpin Region in the Recognition Mechanism, Biochem. J., 2005, vol. 389, pp. 869–876.

    Article  PubMed  Google Scholar 

  34. Braun, V., Patzer, S.I., and Hantke, K., Ton-Dependent Colicins and Microcins: Modular Design and Evolution, Biochimie, 2002, vol. 84, pp. 365–380.

    Article  PubMed  CAS  Google Scholar 

  35. De Cristóbal, R.E., Solbiati, J.O., Zenoff, A.M., et al., Microcin J25 Uptake: His5 of the MccJ25 Lariat Ring Are Involved in the Interaction with the Inner-Membrane MccJ25 Transporter Protein SbmA, J. Bacteriol., vol. 188, pp. 3324–3328.

  36. Darst, S.A., New Inhibitors Targeting Bacterial RNA Polymerase, Trends. Biochem. Sci., 2004, vol. 29, pp. 159–160.

    Article  PubMed  CAS  Google Scholar 

  37. Yuzenkova, Y., Delgado, M., Nechaev, S., et al., Mutations Leading to Microcin J25 Resistance Affect Evolutionary Conserved Residues in the Secondary Channel of Bacterial RNA Polymerase, J. Biol. Chem., 2002, vol. 277, pp. 50 867–50 875.

    Article  CAS  Google Scholar 

  38. Mukhopadhyay, J., Sineva, E., Knight, J., et al., Antibacterial Peptide Microcin J25 Inhibits Transcription by Binding within and Obstructing the RNA Polymerase Secondary Channel, Mol. Cell, 2004, vol. 14, pp. 739–751.

    Article  PubMed  CAS  Google Scholar 

  39. Adelman, K., Yuzenkova, J., La Porta, A., et al., Molecular Mechanism of Transcription Inhibition by Peptide Antibiotic Microcin, Mol. Cell, 2004, vol. 16, pp. 753–762.

    Article  Google Scholar 

  40. Semenova, E., Yuzenkova, Y., Peduzzi, J., et al., Structure-Activity Analysis of Microcin J25: Distinct Parts of the Threaded Lasso Molecule Are Responsible for Interaction with Bacterial RNA Polymerase, J. Bacteriol., 2005, vol. 187, pp. 3859–3863.

    Article  PubMed  CAS  Google Scholar 

  41. Vincent, P.A., Bellomio, A., de Arcuri, B.F., et al., MccJ25 C-Terminal Is Involved in RNA-Polymerase Inhibition but Not in Respiration Inhibition, Biochem. Biophys. Res. Commun., 2005, vol. 331, pp. 549–551.

    Article  PubMed  CAS  Google Scholar 

  42. Rintoul, M.R., de Arcuri, B.F., Salomon, R.A., et al., The Antibacterial Action of Microcin J25: Evidence for Disruption of Cytoplasmic Membrane Energization in Salmonella newport, FEMS Microbiol. Lett., 2001, vol. 204, pp. 265–270.

    Article  PubMed  CAS  Google Scholar 

  43. Khmel, I.A., Bondarenko, V.M., Manokhina, I.M., et al., Isolation and Characterization of Escherichia coli Strains Producing Microcins of B and C Types, FEMS Microbiol. Lett., 1993, vol. 111, pp. 269–274.

    Article  PubMed  CAS  Google Scholar 

  44. Guijarro, J.I., Gonzalez-Pastor, J.E., Baleux, F., et al., Chemical Structure and Translation Inhibition Studies of the Antibiotic Microcin C7, J. Biol. Chem., 1995, vol. 270, pp. 23 520–23 532.

    CAS  Google Scholar 

  45. Metlitskaya, A., Kazakov, T., Kommer, A., et al., Aspartyl-tRNA Synthetase Is the Target of Peptidenucleotide Antibiotic Microcin C, J. Biol. Chem., 2006, vol. 281, pp. 18 033–18 042.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.A. Pavlova, K.V. Severinov, 2006, published in Genetika, 2006, Vol. 42, No. 12, pp. 1636–1646.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlova, O.A., Severinov, K.V. Posttranslationally modified microcins. Russ J Genet 42, 1380–1389 (2006). https://doi.org/10.1134/S1022795406120040

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406120040

Keywords

Navigation