Skip to main content
Log in

Theoretical and applied aspects of epigenetic reprogramming in mammalian development

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Epigenetic reprogramming implies changes in germ and somatic cells of an embryo, which are the consequences of gene activity regulation by means of DNA methylation, histone modification, and altered chromatin compaction. This suggests that epigenetic changes in mammalian cell nucleus occur during gametogenesis and totipotent zygote formation. Epigenetic changes proceed during morphological and inductive interactions between cleaving blastomeres and subsequent interactions between the inner cell contents and trophoectoderm, as well as when the germinal layers (blastophyllums) and their derivatives appear, i.e., during the embryonic histogenesis [1]. Some authors [2–4] assume that in vitro fertilization and consequent human zygote cultivation lead to defects of genomic imprinting [2–4]. This leads to abnormal embryonic and fetal development and increased incidence of hereditary diseases—Beckwith-Wiederman or Angelman syndromes. The present review, critically considers the facts on which the above hypothesis is based.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meehan, R., Dunkan, S., Ruzov, A., et al., Epigenetic Silencing in Embryogenesis, Exp. Cell Res., 2005, vol. 309, pp. 241–249.

    Article  PubMed  CAS  Google Scholar 

  2. Lucifero, D., Chaillet, J.R., and Trasler, J.M., Potential Significance of Genomic Imprinting Defects for Reproduction and Assisted Reproductive Technology, Hum. Reprod. Update, 2004, vol. 10, pp. 3–11.

    Article  PubMed  CAS  Google Scholar 

  3. Waterland, R.A. and Jirte, R.L., Early Nutrition, Epigenetic Changes at Transpasons and Imprinted Genes, and Enhanced Susceptibility to Adult Chronic Diseases, Nutrition, 2004, vol. 20, pp. 63–68.

    Article  PubMed  CAS  Google Scholar 

  4. Morgan, H.D., Hugh, D., Santos, F., et al., Epigenetic Reprogramming in Mammals, Hum. Mol. Genet., 2005, vol. 14, pp. R47–R58.

    Article  PubMed  CAS  Google Scholar 

  5. Matzuk, M., Burns, K.G., Viveiros, M., et al., Intercellular Communication in Mammalian Ovary: Oocytes Carry the Conversation, Science, 2002, vol. 296, pp. 2178–2180.

    Article  PubMed  CAS  Google Scholar 

  6. Eppig, J., Kozak, I., Eicher, E., et al., Ovarian Teratomas in Mice Are Derived from Oocytes that Have Completed the First Meiotic Division, Nature, 1977, vol. 269, pp. 517–518.

    Article  PubMed  CAS  Google Scholar 

  7. Eppig, J., Wigglesworth, K., Varnum, D., et al., Genetic Regulation of Traits Essential for Spontaneous Ovarian Teratocarcinogenesis in Strain LT/Sv Mice: Aberrant Meiotic Cycle, Oocytes Activation and Parthenogenetic Development, Cancer Res., 1996, vol. 56, pp. 5047–5055.

    PubMed  CAS  Google Scholar 

  8. Dyban, P.A., Morphological Characteristic of Spontaneous Ovarian Teratomas in Strains LT/Sv and Lt/Sv × BJ Mice, Eksperimental’naya Onkologiya, 1981, vol. 3, pp. 44–50.

    Google Scholar 

  9. Dyban, P.A., Comparative Study of Proliferative Process in Follicular Epithelium upon Normal Oogenesis and Spontaneous Parthenogenesis in Strain LT/Sv Mice, Tsitologiya, 1981, vol. 23, pp. 1200–1201.

    Google Scholar 

  10. Dyban, P.A., Abnomal Correlations between Oocyte Growth and Proliferative Activity of Follicular Epithelium in Mutant Strain LT/Sv Mice Ovary, Ontogenez, 1982, vol. 6, pp. 650–655.

    Google Scholar 

  11. Dyban, P.A., Study of Cell Differentiation, Histogenesis and Organogenesis in Experimental Teratomas, Doctoral (Biology) Dissertation, St. Petersburg: Inst. Exp. Medicine, Rus. Acad. Med. Sci., 2000.

    Google Scholar 

  12. Comperts, M., Wylie, C., and Heasman, J., Primordial Cell Migration, Germline Development, Marsh, J. and Goode, J., Eds., Chichester: Wiley, 1994, pp. 120–139.

    Google Scholar 

  13. De Felici, M., Scaldaferri, M.L., Lobascio, M., et al., Experimental Approaches to the Study of Primordial Germ Cell Lineage and Proliferation, Hum. Reprod. Update, 2004, vol. 10, no. 3, pp. 179–206.

    Article  Google Scholar 

  14. Lovel-Badge, R. and Robertson, E., XY Female Mice Resulting from Heritage Mutation in the Murine Primary Testis Determining Gene Tdy, Development, 1990, vol. 109, pp. 635–646.

    Google Scholar 

  15. Martineau, J., Nordqvist, K., Matsui, Y., et al., Male-Specific Cell Migration into Developing Gonad, Curr. Biol., 1997, vol. 7, pp. 958–968.

    Article  PubMed  CAS  Google Scholar 

  16. Schmahl, J. and Capel, B., Cell Proliferation Is Necessary for the Determination of Male Fate in the Gonad, Dev. Biol., 2003, vol. 258, pp. 264–276.

    Article  PubMed  CAS  Google Scholar 

  17. McLaren, A., Primordial Germ Cells in the Mouse, Dev. Biol., 2003, vol. 262, pp. 1–15.

    Article  PubMed  CAS  Google Scholar 

  18. Pangas, S.A. and Rajkovich, A., Transcriptional Regulation of Early Oogenesis: in Search of Masters, Hum. Reprod. Update, 2006, vol. 12, no. 3, pp. 65–76.

    PubMed  CAS  Google Scholar 

  19. Saltou, M., Barton, S., and Surani, M.A., A Molecular Program for the Specification of Germ Cell Fate in Mice, Nature, 2002, vol. 418, pp. 263–300.

    Google Scholar 

  20. Schmahl, J. and Capel, B., Cell Proliferation Is Necessary for the Determination of Male Fate in the Gonad, Dev. Biol., 2003, vol. 256, pp. 264–276.

    Article  CAS  Google Scholar 

  21. Arney, K.L., Bao, S., Bannister, A., et al., Histone Methylation Defines Epigenetic Asymmetry in the Mouse Zygote, Int. J. Dev. Biol., 2002, vol. 46, pp. 317–320.

    PubMed  CAS  Google Scholar 

  22. Dyban, A.P., Rannee razvitie mlekopitayushchikh (Early Development in Mammals), Leningrad: Nauka, 1988.

    Google Scholar 

  23. Dyban, A.P. and Noniashvili, E.M., Cytogenetic Aspects of Mammal Parthenogenesis, Biologiya razvitiya i upravlenie nasledstvennost’yu (Developmental Biology and the Management of Heredity), Strunnikov, V.A., Ed., Moscow: Nauka, 1986, pp. 26–41.

    Google Scholar 

  24. Schultz, R.M., The Molecular Foundation of the Maternal to Zygotic Transition in the Preimplantation Embryo, Hum. Reprod. Update, 2002, vol. 8, no. 4, pp. 323–331.

    Article  PubMed  CAS  Google Scholar 

  25. Aoki, F., Worrad, D.M., and Schultz, R.M., Regulation of Transcriptional Activity During the First and Second Cell Cycles in the Preimplantation Mouse Embryo, Dev. Biol., 1997, vol. 181, pp. 296–307.

    Article  PubMed  CAS  Google Scholar 

  26. Dyban, A.P., Comparison of Biological Features of Totipotent and Pluropotent Cells of Preimplantant Murine Embryos with the Properties of the in Vitro Cultivated Embryonic Stem Cells, Tsitologiya, 2004, vol. 46, no. 10, pp. 914–915.

    Google Scholar 

  27. Sorokin, A.V., Noniashvili, E.M., Sasina, L.K., et al., Expression of Green Fluorescent Protein (EGFP) Gene at the Early Stages of Murine Embryonic Development, Tsitologiya, 2004, vol. 46, no. 10, pp. 942–943.

    Google Scholar 

  28. Holtzer, H. and Rubinstein, N., Biehl, J., et al. Lineages, Quantal Cell Cycles and the Generation of Cell Diversity, Q. Rev. Biophys., 1975, vol. 8, pp. 523–557.

    Article  PubMed  CAS  Google Scholar 

  29. Holtzer, H., Biehl, J., Rubinstein, N., et al., Quantal and Proliferative Cell Cycles: How Lineage Generate Cell Diversity and Maintain Fidelity, Prog. Cell Cycle Res., 1982, vol. 134, pp. 213–227.

    Google Scholar 

  30. Jaenisch, R. and Bird, A., Epigenetic Regulation of Gene Expression: How the Genome Integrates Intrinsic and Environmental Signals, Nature Genet., 2003, vol. 33, pp. 245–254.

    Article  PubMed  CAS  Google Scholar 

  31. Santos, F. and Dean, W., Epigenetic Reprogramming During Early Development in Mammals, Reproduction, 2004, vol. 127, pp. 643–651.

    Article  PubMed  CAS  Google Scholar 

  32. Smith, A., The Battlefield of Pluropotency, Cell, 2005, vol. 123, pp. 757–760.

    Article  PubMed  CAS  Google Scholar 

  33. Ralston, A. and Rossant, J., How Signaling Promotes Stem Cell Survival: Trophoblast Stem Cells and Snp2, Dev. Cell, 2006, vol. 10, pp. 275–281.

    Article  PubMed  CAS  Google Scholar 

  34. Shepard, T.H., Catalog of Teratogenic Agents, Baltimore: John Hopkins Univ. Press, 2001, 10th ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.P. Dyban, P.A. Dyban, 2006, published in Genetika, 2006, Vol. 42, No. 12, pp. 1615–1620.

This paper finishes the series of publications devoted to the current problems of epigenetics (Russ. J. Genet., 2006, vol. 42, no. 9).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyban, A.P., Dyban, P.A. Theoretical and applied aspects of epigenetic reprogramming in mammalian development. Russ J Genet 42, 1362–1366 (2006). https://doi.org/10.1134/S1022795406120027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406120027

Keywords

Navigation