Skip to main content
Log in

Genetic differentiation of pink salmon Oncorhynchus gorbuscha Walbaum in the Asian part of the range

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic variation at 19 enzyme (including 11 polymorphic) and 10 microsatellite loci was examined in the population samples of odd-and even-broodline pink salmon from the southern part of Sakhalin Island, Southern Kuril Islands, and the northern coast of the Sea of Okhotsk. The estimates of relative interpopulation component of genetic variation for the allozyme loci, per broodline, were on average 0.43% (G ST), while over the microsatellite loci it was 0.26% (the ϑST coefficient, F-statistics based on the allele frequency variance), and 0.90% (the ρST coefficient, R-statistics based on the allele size variance). The values of interlinear component constituted 2.34, 0.31, and 1.05% of the total variation, respectively. Using the allozyme loci, statistically significant intralinear heterogeneity was demonstrated among the regions, as well as among the populations of southern Sakhalin. Multidimensional scaling based on the allozyme data demonstrated regional clustering of the sample groups, representing certain populations during the spawning run or in different years. Most of the microsatellite loci examined were found to be highly polymorphic (mean heterozygosity > 0.880). The estimates of interlinear, interregional, and interpopulation variation over these loci in terms of ϑST values were substantially lower than in terms of ρST values. Regional genetic differentiation, mostly expressed at the allozyme loci between the populations from the northern Sea of Okhotsk and the Sakhalin and Kuril group of populations, was less expressed at the microsatellite loci. The differentiation between these regions observed can be considered as the evidence in favor of a large-scale isolation by distance characterizing Asian pink salmon. It is suggested that in pink salmon, low genetic differentiation at neutral microsatellite loci can be explained by extremely high heterozygosity of the loci themselves, as well as by the migration gene exchange among the populations (the estimate of the gene migration coefficient inferred from the “private” allele data constituted 2.6 to 3.4%), specifically, by the ancient migration exchange, which occurred during postglacial colonization of the range

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heard, W.R., Life History of Pink Salmon (Oncorhynchus gorbuscha), Pacific Salmon Life Histories, Groot, C. and Margolis, L., Eds., Vancouver: UBC, 1991, pp. 121–130.

    Google Scholar 

  2. Altukhov, Yu.P., Salmenkova, E.A., and Omel’chenko, V.T., Populyatsionnaya genetika lososevykh ryb (Population Genetics of Salmonid Fishes), Moscow: Nauka, 1997, p. 288.

    Google Scholar 

  3. Altukhov, Yu.P., Salmenkova, E.A., Omel’chenko, V.T., and Efanov, V.N., Genetic Differentiation and Population Structure of Pink Salmon in the Sakhalin-Kuril Region, Biol. Morya, 1983, no. 2, pp. 46–51.

  4. Salmenkova, E.A., Basic Results and Aims in Population Genetic Studies of Salmonids, Genetika v akvakul’ture, (Genetics in Aquaculture), Kirpichnikov, V.S., Ed., Leningrad: Nauka, 1989, pp. 7–29.

    Google Scholar 

  5. Kartavtsev, Yu.F., Spatial and Temporal Variation of Allele Frequencies in Populations of Pink Salmon Oncorhynchus gorbuscha, Vopr. Ikhtiol., 1991, vol. 31, no. 3, pp. 487–495.

    Google Scholar 

  6. Altukhov, Yu.P., Mezhzherin, S.V., Salmenkova, E.A., and Omel’chenko, V.T., The Influence of Selective Hatchery on Adaptive Genetic and Biological Structure in Populations of Pink Salmon Oncorhynchus gorbuscha (Walb.), Genetika (Moscow), 1989, vol. 25, no. 10, pp. 1843–1853.

    Google Scholar 

  7. Kalabushkin, B.A., Salmenkova, E.A., Omel’chenko, V.T., et al., Population Structure and Gene Migrations in Pink Salmon Oncorhynchus gorbuscha from the Sakhalin-Kuril Region, Genetika (Moscow), 1998, vol. 34, no. 12, pp. 1428–1437.

    CAS  Google Scholar 

  8. Altukhov, Yu.P., Salmenkova, E.A., Omel’chenko, V.T., et al., Balancing Selection as a Possible Factor Maintaining the Uniformity of Allozyme Allele Frequency in the Populations of Pink Salmon Oncorhynchus gorbuscha (Walbaum), Genetika (Moscow), 1987, vol. 23, no. 10, pp. 1884–1896.

    Google Scholar 

  9. Zhivotovsky, L.A., Afanas’ev, K.I., and Rubtsova, G.A., Selective Prossesses at Enzyme Loci of Pink Salmon, Genetika (Moscow), 1987, vol. 23, no. 10, pp. 1876–1883.

    Google Scholar 

  10. Zhivotovsky, L.A., Glubokovsky, M.K., Viktorovsky, R.M., et al., Genetic Differentiation of Pink Salmon, Genetika (Moscow), 1989, vol. 25, no. 7, pp. 1261–1274.

    Google Scholar 

  11. O’Connell, M. and Wright, J.M., Microsatellite DNA in Fishes, Rev. Fish. Biol. Fisheries, 1997, vol. 7, pp. 331–363.

    Article  Google Scholar 

  12. Estoup, A., Rousset, F., Michalakis, J.M., et al., Comparative Analysis of Microsatellite and Allozyme Markers: A Case Study Investigating Microgeographic Differentiation in Brown Trout (Salmo trutta), Mol. Ecol., 1998, vol. 7, pp. 339–353.

    Article  PubMed  CAS  Google Scholar 

  13. Estoup, A. and Angers, B., Microsatellites and Minisatellites for Molecular Biology: Theoretical and Empirical Considerations, Advances in Molecular Ecology, Carvalho, G.R., Ed., Amsterdam: IOS, 1998, pp. 55–86.

    Google Scholar 

  14. Peacock, A.C., Bunting, S.L., and Queen, K.G., Serum Protein Electrophoresis in Acrylamide Gel: Patterns from Normal Human Subjects, Science, 1965, vol. 147, pp. 1451–1452.

    Article  PubMed  CAS  Google Scholar 

  15. Ridgway, G.L., Shernburne, S.W., and Lewis, R.D., Polymorphism in the Serum Esterases of Atlantic Herring, Trans. Am. Fish. Soc., 1970, vol. 9, pp. 147–151.

    Article  Google Scholar 

  16. Shaw, C.R. and Prasad, R., Starch Gel Electrophoresis of Enzymes—a Compilation of Recipes, Biochem. Genet., 1970, vol. 4, pp. 297–320.

    Article  PubMed  CAS  Google Scholar 

  17. Aebersold, P.B., Winans, G.A., Teel, D.J., et al., Manual for Starch Gel Electrophoresis: A Method for the Detection of Genetic Variation, NOAA Technical Report NMFS, 1987, vol. 61, pp. 1–19.

    Google Scholar 

  18. Shaklee, J.B., Allendorf, F.W., Morizot, D.C., and Whitt, G.S., Gene Nomenclature for Protein-Coding Loci in Fish, Trans. Am. Fish. Soc., 1990, vol. 119, pp. 2–15.

    Article  CAS  Google Scholar 

  19. Nei, M., Molecular Population Genetics and Evolution, Amsterdam: North-Holland, 1975.

    Google Scholar 

  20. Cavalli-Sforza, L.L. and Edwards, A.W.F., Phylogenetic Analysis: Models and Estimation Procedures, Am. J. Hum. Genet., 1967, vol. 19 pp. 233–257.

    PubMed  Google Scholar 

  21. Swofford, D.L. and Selander, B.B., BIOSYS-1, a PC Program for the Analysis of Allelic Variation in Population Genetics and Biochemical Systematics, 1989, release 1.7, Urbana II, Univ. Illinois, Nat. Hyst. Surv.

  22. Zaykin, D.V. and Pudovkin, A.I., Two Programs to Estimate Significance of Chi-Square Values Using Pseudo-Probability Tests, J. Hered., 1993, vol. 84, p. 152.

    Google Scholar 

  23. Weir, B.S., Analiz geneticheskikh dannykh (Analysis of Genetic Data), Moscow: Mir, 1995, p. 400.

    Google Scholar 

  24. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  25. Gordeeva, N.V., Salmenkova, E.A., and Altukhov, Yu.P., Genetic Divergence in Pink Salmon Introduced into the European North of Russia: Microsatellite and Allozyme Variation Analysis, Russ J. Genet., 2006, vol. 42, no. 3, pp. 268–278.

    Article  CAS  Google Scholar 

  26. Goudet, J., FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices, 2001, version 2.9.3.2, http://www.unil.ch/izea/softwares/fstat.html

  27. Raymond, M. and Rousset, F., GENEPOP (3.4): Population Genetics Software for Exact Tests and Ecumenicism, J. Hered., 1995, vol. 86, pp. 248–249.

    Google Scholar 

  28. Guo, S.W. and Thompson, E.A., Performing the Exact Test for Hardy-Weinberg Proportion for Multiple Alleles, Biometrics, 1992, vol. 48, pp. 361–372.

    Article  PubMed  CAS  Google Scholar 

  29. Weir, B.S. and Cockerham, C.C., Estimating F-Statistics for the Analysis of Population Structure, Evolution, 1984, vol. 38, pp. 117–125.

    Article  Google Scholar 

  30. Rousset, F., Equilibrium Values of Measures of Population Subdivision for Stepwise Mutation Processes, Genetics, 1996, vol. 142, pp. 1357–1362.

    PubMed  CAS  Google Scholar 

  31. Slatkin, M., Rare Alleles As Indicators of Gene Flow, Evolution, 1985, vol. 39, pp. 53–65.

    Article  Google Scholar 

  32. Scribner, K.T., Gust, J.R., and Fields, R.L., Isolation and Characterization of Novel Microsatellite Loci: Cross-Species Amplification and Population Genetic Applications, Can. J. Fish. Aquat. Sci., 1996, vol. 53, pp. 685–693.

    Article  Google Scholar 

  33. Olsen, J.B., Wilson, S.L., Kretschmer, E.J., et al., Characterization of 14 Tetranucleotide Microsatellite Loci Derived from Sockeye Salmon, Mol. Ecol., 2000, vol. 9, pp. 2185–2187.

    PubMed  CAS  Google Scholar 

  34. Olsen, J.B., Seeb, J.E., Bentzen, P., and Seeb, J.E., Genetic Interpretation of Broad-Scale Microsatellite Polymorphism in Odd-Year Pink Salmon, Trans. Am. Fish. Soc., 1998, vol. 127, pp. 535–550.

    Article  Google Scholar 

  35. O’Reilly, P., Hamilton, L.C., McConnell, S.K., and Wright, J.M., Rapid Detection of Genetic Variation in Atlantic Salmon (Salmo salar) by PCR Multiplexing of Dinucleotide and Tetranucleotide Microsatellites, Can. J. Fish. Aquat. Sci., 1996, vol. 53, pp. 2292–2298.

    Article  CAS  Google Scholar 

  36. Excoffier, L., Smouse, P., and Quattro, J., Analysis of Molecular Variance Inferred from Metric Distances Among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data, Genetics, 1992, vol. 131, pp. 479–491.

    PubMed  CAS  Google Scholar 

  37. Excoffier, L., Guillaume, L., and Schneider, S., ARLEQUIN ver. 3.01: An Integrated Software Package for Population Genetics Data Analysis, 2006, http://www.unibe.ch/softwares/arlequin3

  38. Hawkins, S.L., Varnavskaya, N.V., Matzak, E.A., et al., Population Structure of Odd-Broodline Asian Pink Salmon and Its Contrast to the Even-Broodline Structure, J. Fish. Biol., 2002, vol. 60, pp. 370–388.

    Article  Google Scholar 

  39. Noll, C., Varnavskaya, N.V., Matzak, E.A., et al., Analysis of Contemporary Genetic Structure of Even-Brood-year Populations of Asian and Western Alaskan Pink Salmon, Oncorhynchus gorbuscha, Fish. Bull., 2001, vol. 99, no. 1, pp. 123–138.

    Google Scholar 

  40. Hedrick, P.W., Perspective: Highly Variable Loci and Their Interpretation in Evolution and Conservation, Evolution, 1999, vol. 53, no. 2, pp. 313–318.

    Article  Google Scholar 

  41. Rukhlov, F.N., Specific Features of Pacific Salmon Egg Collection in Sakhalin Hatcheries, Biologicheskie osnovy razvitiya lososevogo khozyaistva v vodoemakh SSSR (Biological Basis of Salmon Hatchery Development in USSR Water Bodies), Moscow: Nauka, 1983, pp. 72–84.

    Google Scholar 

  42. Varnavskaya, N.V., Principles of Genetic Identification of Pacific Salmon Populations in Connection to Rational Fishery, Doctoral (Biol.) Dissertation, Moscow: Inst. Gen. Genet., 2001, p. 329.

    Google Scholar 

  43. Bakshtansky, E.L., The Introduction of Pink Salmon into Kola Peninsula, Salmon Ranching, Thorpe, J., Ed., London: Academic, 1980, pp. 245–259.

    Google Scholar 

  44. Quinn, T.P., A Review of Homing and Straying of Wild and Hatchery-Produced Salmon, Fish. Res., 1993, vol. 18, pp. 29–44.

    Article  Google Scholar 

  45. Omel’chenko, V.T. and Vyalova, G.P., Population Structure of Pink Salmon, Biol. Morya, 1990, no. 1, pp. 1–13.

  46. Gharrett, A.J., Lane, S., McGregor, A.J., and Taylor, S.G., Use of Genetic Markers to Examine Genetic Interaction Among Subpopulations of Pink Salmon (Oncorhynchus gorbuscha), Genetics, 2001, vol. 111, pp. 259–267.

    Article  CAS  Google Scholar 

  47. Glubokovsky, M.K. and Zhivotovsky, L.A., Population Structure of Pink Salmon: System of Fluctuating Stocks, Biol. Morya, 1986, no. 2, pp. 39–44.

  48. Khovanskii, I.E., Acclimatization of Pink Salmon from the Northern Part of Okhotsk Sea in European North, Rybnoe Khozyaistvo, 2000, no. 2, pp. 38–39.

  49. Shaklee, J.B. and Varnavskaya, N.V., Electrophoretic Characterization of Odd-Year Pink Salmon (Oncorhynchus gorbuscha) Populations from the Pacific Coast of Russia, and Comparison with Selected North American Populations, Canad. J. Fish. Aquat. Sci., 1994, vol. 51, no. Suppl. 1, pp. 158–170.

    CAS  Google Scholar 

  50. Churikov, D. and Gharrett, A.J., Comparative Phylogeography of the Two Pink Salmon Broodlines: An Analysis Based on a Mitochondrial DNA Genealogy, Mol. Ecol., 2002, vol. 11, pp. 1077–1101.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.A. Salmenkova, N.V. Gordeeva, V.T. Omel’chenko, Yu. P. Altukhov, K.I. Afanas’ev, G.A. Rubtsova, Yu.V. Vasileva, 2006, published in Genetika, 2006, Vol. 42, No. 10, pp. 1371–1387.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmenkova, E.A., Gordeeva, N.V., Omel’chenko, V.T. et al. Genetic differentiation of pink salmon Oncorhynchus gorbuscha Walbaum in the Asian part of the range. Russ J Genet 42, 1148–1163 (2006). https://doi.org/10.1134/S1022795406100073

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406100073

Keywords

Navigation