Skip to main content
Log in

Genomic instability in the offspring of irradiated parents: Facts and interpretations

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This review is devoted to genomic instability in the offspring of parents that were irradiated or treated with chemical mutagens. The evidence is presented, showing high frequency of cancer diseases and instability of the genome of somatic and germline cells in the offspring of radiation-exposed animals. Possible epigenetic mechanisms of these effects are considered, as well as their significance as components of genetic factors of radiation risk for humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in the Populations), Moscow: Akademkniga, 2003.

    Google Scholar 

  2. UNSCEAR. Hereditary Effects of Radiation, New York: United Nations, 2001.

  3. Morgan, W.F., Non-Targeted and Delayed Effects of Exposure to Ionizing Radiation: I. Radiation-Induced Genomic Instability and Bystander Effects in vitro, Radiat. Res., 2003, vol. 159, pp. 567–580.

    PubMed  CAS  Google Scholar 

  4. Morgan, W.F., Non-Targeted and Delayed Effects of Exposure to Ionizing Radiation: II. Radiation-Induced Genomic Instability and Bystander Effects in vivo, Clastogenic Factors and Transgenerational Effects, Radiat. Res., 2003, vol. 159, pp. 581–596.

    PubMed  CAS  Google Scholar 

  5. Lorimore, S.A., Coates, P.J., and Wright, E.G., Radiation-Induced Genomic Instability and Bystander Effects: Inter-Related Nontargeted Effects of Exposure to Ionizing Radiation, Oncogene, 2003, vol. 22, pp. 7058–69.

    PubMed  CAS  Google Scholar 

  6. Little, J.B., Radiation Carcinogenesis, Carcinogenesis, 2000, vol. 21, pp. 397–404.

    PubMed  CAS  Google Scholar 

  7. Goldberg, Z., Clinical Implications of Radiation-Induced Genomic Instability, Oncogene, 2003, vol. 22, pp. 7011–7017.

    PubMed  CAS  Google Scholar 

  8. Huang, L., Snyder, A.R., and Morgan, W.F., Radiation-Induced Genomic Instability and Its Implications for Radiation Carcinogenesis, Oncogene, 2003, vol. 22, pp. 5848–5854.

    PubMed  CAS  Google Scholar 

  9. Loeb, L.A., Loeb, K.R., and Anderson, J.P., Multiple Mutations and Cancer, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 776–781.

    PubMed  CAS  Google Scholar 

  10. Finette, B.A., Homans, A.C., and Albertini, R.J., Emergence of Genetic Instability in Children Treated for Leukemia, Science, 2000, vol. 288, pp. 514–517.

    PubMed  CAS  Google Scholar 

  11. Nakanishi, M., Tanaka, K., Takahashi, T., et al., Microsatellite Instability in Acute Myelocytic Leukaemia Developed from A-Bomb Survivors, Int. J. Radiat. Biol., 2001, vol. 77, pp. 687–694.

    PubMed  CAS  Google Scholar 

  12. Tawn, E.J., Whitehouse, C.A., and Martin, F.A., Sequential Chromosome Aberration Analysis Following Radiotherapy-No Evidence for Enhanced Genomic Instability, Mutat. Res., 2000, vol. 465, pp. 45–51.

    PubMed  CAS  Google Scholar 

  13. Dubrova, Y.E. and Plumb, M.A., Ionising Radiation and Mutation Induction at Mouse Minisatellite Loci. The Story of the Two Generations, Mutat. Res., 2002, vol. 499, pp. 143–150.

    PubMed  CAS  Google Scholar 

  14. Dubrova, Y.E., Radiation-Induced Transgenerational Instability, Oncogene, 2003, vol. 22, pp. 7087–7093.

    PubMed  CAS  Google Scholar 

  15. Nomura, T., Transgenerational Carcinogenesis: Induction and Transmission of Genetic Alterations and Mechanisms of Carcinogenesis, Mutat. Res., 2003, vol. 544, pp. 425–432.

    PubMed  CAS  Google Scholar 

  16. Bouffler, S.D., Bridges, B.A., Cooper, D.N., et al., Assessing Radiation-Associated Mutational Risk to the Germline: Repetitive DNA Sequences as Mutational Targets and Biomarkers, Radiat. Res., 2006, vol. 165, pp. 249–268.

    PubMed  CAS  Google Scholar 

  17. Barber, R.C. and Dubrova, Y.E., The Offspring of Irradiated Parents, Are They Stable? Mutat. Res., 2006, vol. 598, pp. 50–60.

    PubMed  CAS  Google Scholar 

  18. Auroux, M.R., Dulioust, E.J., Nawar, N.N., et al., Antimitotic Drugs in the Male Rat. Behavioral Abnormalities in the Second Generation, J. Androl, 1988, vol. 9, pp. 153–159.

    PubMed  CAS  Google Scholar 

  19. Auroux, M., Dulioust, E., Selva, J., and Rince, P., Cyclophosphamide in the F0 Male Rat: Physical Behavioral Changes in Three Successive Adult Generations, Mutat. Res., 1990, vol. 229, pp. 189–200.

    PubMed  CAS  Google Scholar 

  20. Burruel, V.R., Raabe, O.G., and Wiley, L.M., In vitro Fertilization Rate of Mouse Oocytes with Spermatozoa from the F1 Offspring of Males Irradiated with 1.0 Gy 137Cs Gamma-Rays, Mutat. Res., 1997, vol. 381, pp. 59–66.

    PubMed  CAS  Google Scholar 

  21. Nomura, T., Parental Exposure to X-Rays and Chemicals Induces Heritable Tumours and Anomalies in Mice, Nature, 1982, vol. 296, pp. 575–577.

    PubMed  CAS  Google Scholar 

  22. Gardner, M.J., Snee, M.P., Hall, A.J., et al., Results of Case-Control Study of Leukemia and Lymphoma Among Young People Near Sellafield Nuclear Plant in West Cumbria, Br. Med. J., 1990, vol. 300, pp. 423–429.

    CAS  Google Scholar 

  23. Perinatal and Multigenerational Carcinogenesis, Napalkov, N.P., Rice, J.M., Tomatis, L., and Yamasaki, H., Eds., Lyon: IARC, 1989.

    Google Scholar 

  24. Daher, A., Varin, M., Lamontagne, Y., and Oth, D., Effect of Pre-Conception External or Internal Irradiation of N5 Male Mice and the Risk of Leukemia in their Offspring, Carcinogenesis, 1998, vol. 19, pp. 1553–1558.

    PubMed  CAS  Google Scholar 

  25. Cattanach, B.M., Patrick, G., Papworth, D., et al., Investigation of Lung Tumour Induction in BALB/CJ Mice Following Paternal X-Irradiation, Int. J. Radiat. Biol., 1995, vol. 67, pp. 607–615.

    PubMed  CAS  Google Scholar 

  26. Cattanach, B.M., Papworth, D., Patrick, G., et al., Investigation of Lung Tumour Induction in C3H/HeH Mice, with and Without Tumour Promotion with Urethane, Following Paternal X-Irradiation, Mutat. Res., 1998, vol. 403, pp. 1–12.

    PubMed  CAS  Google Scholar 

  27. Turusov, V.S., Nikonova, T.V., and Parfenov, Y.D., Increased Multiplicity of Lung Adenomas in Five Generations of Mice Treated with Benz(a)pyrene When Pregnant, Cancer Lett., 1990, vol. 55, pp. 227–231.

    PubMed  CAS  Google Scholar 

  28. Nomura, T., X-Ray-Induced Germ-Line Mutation Leading to Tumors. Its Manifestation in Mice Given Urethane Post-Natally, Mutat. Res., 1983, vol. 121, pp. 59–65.

    PubMed  CAS  Google Scholar 

  29. Vorobtsova, I.E., Aliyakparova, L.M., and Anisimov, V.N., Promotion of Skin Tumors by 12-O-Tetradecanoylphorbol-13-Acetate in Two Generations of Descendants of Male Mice Exposed to X-Ray Irradiation, Mutat. Res., 1993, vol. 287, pp. 207–216.

    PubMed  CAS  Google Scholar 

  30. Lord, B.I., Woolford, L.B., Wang, L., et al., Tumour Induction by Methyl-Nitroso-Urea Following Preconceptional Paternal Contamination with Plutonium-239, Br. J. Cancer, 1998, vol. 78, pp. 301–311.

    PubMed  CAS  Google Scholar 

  31. Lord, B.I., Woolford, L.B., Wang, L., et al., Induction of Lympho-Haemopoietic Malignancy: Impact of Preconception Paternal Irradiation, Int. J. Radiat. Biol., 1998, vol. 74, pp. 721–728.

    PubMed  CAS  Google Scholar 

  32. Hoyes, K.P., Lord, B.I., McCann, C., et al., Transgenerational Effects of Preconception Paternal Contamination with 55Fe, Radiat. Res., 2001, vol. 156, pp. 488–494.

    PubMed  CAS  Google Scholar 

  33. Dasenbrock, C., Tillman, T., Ernst, H., et al., Maternal Effects and Cancer Risk in the Progeny of Mice Exposed To X-Rays Before Conception, Exptl. Toxicol. Pathol., 2005, vol. 56, pp. 351–360.

    Google Scholar 

  34. Vorobtsova, I.E., Irradiation of Male Rats Increases the Chromosomal Sensitivity of Progeny to Genotoxic Agents, Mutagenesis, 2000, vol. 15, pp. 33–38.

    PubMed  CAS  Google Scholar 

  35. Kropacova, K., Slovinska, L., and Misurova, E., Cytogenetic Changes in the Liver of Progeny of Irradiated Male Rats, J. Radiat. Res., 2002, vol. 43, pp. 125–133.

    PubMed  Google Scholar 

  36. Slovinska, L., Elbertova, A., and Misurova, E., Transmission of Genome Damage from Irradiated Male Rats to Their Progeny, Mutat. Res., 2004, vol. 559, pp. 29–37.

    PubMed  CAS  Google Scholar 

  37. Sanova, S., Balentova, S., Slovinska, L., and Misurova, E., Effects of Preconception Gamma Irradiation on the Development of Rat Brain, Neurotoxicol. Teratol., 2005, vol. 27, pp. 145–151.

    PubMed  CAS  Google Scholar 

  38. Fomenko, L.A., Vasil’eva, G.V., and Bezlepkin, V.G., Elevated Micronucleus Frequency in Bone Marrow Erythrocytes in the Progeny of Male Mice Exposed to Chronic Low-Dose Gamma Irradiation, Biol. Bull., 2001, vol. 28, pp. 350–353.

    Google Scholar 

  39. Fenech, M., Holland, N., Chang, W.P., et al., The Human Micronucleus Project-an International Collaborative Study on the Use of the Micronucleus Technique for Measuring DNA Damage in Humans, Mutat. Res., 1999, vol. 428, pp. 271–283.

    PubMed  CAS  Google Scholar 

  40. Luke, G.A., Riches, A.C., and Bryant, P.E., Genomic Instability in Haematopoietic Cells of F1 Generation Mice of Irradiated Male Parents, Mutagenesis, 1997, vol. 12, pp. 147–152.

    PubMed  CAS  Google Scholar 

  41. Carls, N. and Schiestl, R.H., Effect of Ionizing Radiation on Transgenerational Appearance of Pun Reversions in Mice, Carcinogenesis, 1999, vol. 20, pp. 2351–2354.

    PubMed  CAS  Google Scholar 

  42. Shiraishi, K., Shimura, T., Taga, M., et al., Persistent Induction of Somatic Reversions of the Pink-Eyed Unstable Mutation in F1 Mice Born to Fathers Irradiated at the Spermatozoa Stage, Radiat. Res., 2002, vol. 157, pp. 661–667.

    PubMed  CAS  Google Scholar 

  43. Gondo, Y., Gardner, J.M., Nakatsu, Y., et al., High-Frequency Genetic Reversion Mediated by a DNA Duplication: the Mouse Pink-Eyed Unstable Mutation, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 297–301.

    PubMed  CAS  Google Scholar 

  44. Shimada, A. and Shima, A., High Incidence of Mosaic Mutations Induced by Irradiating Paternal Germ Cells of the Medaka Fish, Oryzias latipes, Mutat. Res., 2001, vol. 495, pp. 33–42.

    CAS  Google Scholar 

  45. Shimada, A. and Shima, A., Transgenerational genomic instability as revealed by a somatic mutation assay using the Medaka fish. Mutat. Res., 2004, vol. 552, pp. 119–124.

    PubMed  CAS  Google Scholar 

  46. Shimada, A., Eguchi, H., Yoshinaga, S., and Shima, A., Dose-Rate Effect on Transgenerational Mutation Frequencies in Spermatogonial Stem Cells of the Medaka Fish, Radiat. Res., 2005, vol. 163, pp. 112–114.

    PubMed  CAS  Google Scholar 

  47. Barber, R.C., Hichebotham, P., Hatch, T., et al., Radiation-Induced Transgenerational Alterations in Genome Stability and DNA Damage, Oncogene, 2006.

  48. Luning, K.G., Frolen, H., and Nilsson, A., Genetic Effects of 239Pu Salt Injections in Male Mice, Mutat. Res., 1976, vol. 34, pp. 539–542.

    PubMed  CAS  Google Scholar 

  49. Marchetti, F. and Wyrobek, A.J., Mechanisms and Consequence of Paternally-Transmitted Chromosomal Abnormalities, Birth Defects Res., 2005, vol. 75, pp. 112–129.

    CAS  Google Scholar 

  50. Hales, B.F., Crosman, K., and Robaire, B., Increased Postimplantation Loss and Malformations Among the F2 Progeny of Male Rats Chronically Treated with Cyclophosphamide, Teratology, 1992, vol. 45, pp. 671–678.

    PubMed  CAS  Google Scholar 

  51. Lyon, M.F. and Renshaw, R., Induction of Congenital Malformation in Mice by Paternal Irradiation: Transmission to Later Generations, Mutat. Res., 1988, vol. 198, pp. 277–283.

    PubMed  CAS  Google Scholar 

  52. Lyon, M.F. and Renshaw, R., Induction of Congenital Malformations in the Offspring of Mutagen Treated Mice, Genetic Toxicology of Environmental Chemicals. Part B: Genetic Effects and Applied Mutagenesis, Ramel, C., Lambert, B., and Magnusson, J., Eds., New York: Alan R. Liss, 1986, pp. 449–458.

    Google Scholar 

  53. Pils, S., Muller, W.-U., and Streffer, C., Lethal and Teratogenic Effects in Two Successive Generations of the HLG Mouse Strain After Radiation Exposure of Zygotes—Association with Genomic Instability?, Mutat. Res., 1999, vol. 429, pp. 85–92.

    PubMed  CAS  Google Scholar 

  54. Wiley, L.M., Baulch, J.E., Raabe, O.G. and Straume, T., Impaired Cell Proliferation in Mice That Persists across at least Two Generations after Paternal Irradiation, Radiat. Res., 1997, vol. 148, pp. 145–151.

    PubMed  CAS  Google Scholar 

  55. Searle, A.G., Mutation Induction in Mice, Adv. Radiat. Biol., 1974, vol. 4, pp. 131–207.

    Google Scholar 

  56. Dubrova, Y.E., Nesterov, V.N., Krouchinsky, N.G., et al., Human Minisatellite Mutation Rate After the Chernobyl Accident, Nature, 1996, vol. 380, pp. 683–686.

    PubMed  CAS  Google Scholar 

  57. Dubrova, Y.E., Nesterov, V.N., Krouchinsky, N.G., et al., Further Evidence for Elevated Human Minisatellite Mutation Rate in Belarus Eight Years After the Chernobyl Accident, Mutat. Res., 1997, vol. 381, pp. 267–278.

    PubMed  CAS  Google Scholar 

  58. Dubrova, Y.E., Grant, G., Chumak, A.A., et al., Elevated Minisatellite Mutation Rate in the Post-Chernobyl Families from Ukraine, Am. J. Hum. Genet., 2002, vol. 71, pp. 801–809.

    PubMed  Google Scholar 

  59. Dubrova, Y.E., Bersimbaev, R.I., Djansugurova, L.B., et al., Nuclear Weapons Tests and Human Germline Mutation Rate, Science, 2002, vol. 295, p. 1037.

    PubMed  CAS  Google Scholar 

  60. Dubrova, Y.E., Jeffreys, A.J., and Malashenko, A.M., Mouse Minisatellite Mutations Induced by Ionizing Radiation, Nat. Genet., 1993, vol. 5, pp. 92–94.

    PubMed  CAS  Google Scholar 

  61. Dubrova, Y.E., Plumb, M., Brown, J., et al., Stage Specificity, Dose Response, and Doubling Dose for Mouse Minisatellite Germ-Line Mutation Induced by Acute Radiation, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 6251–6255.

    PubMed  CAS  Google Scholar 

  62. Dubrova, Y.E., Plumb, M., Brown, J., et al., Induction of Minisatellite Mutations in the Mouse Germline by Low-Dose Chronic Exposure to Radiation and Fission Neutrons, Mutat. Res., 2000, vol. 453, pp. 17–24.

    PubMed  CAS  Google Scholar 

  63. Barber, R., Plumb, M.A., Smith, A.G., et al., No Correlation Between Germline Mutation at Repeat DNA and Meiotic Crossover in Male Mice Exposed To X-Rays or Cisplatin, Mutat. Res., 2000, vol. 457, pp. 79–91.

    PubMed  CAS  Google Scholar 

  64. Vilarino-Guell, C., Smith, A.G., and Dubrova, Y.E., Germline Mutation Induction at Mouse Repeat DNA Loci by Chemical Mutagens, Mutat. Res., 2003, vol. 526, pp. 63–73.

    PubMed  CAS  Google Scholar 

  65. Dubrova, Y.E., Radiation-Induced Mutation at Tandem Repeat DNA Loci in the Mouse Germline: Spectra and Doubling Doses, Radiat. Res., 2005, vol. 163, pp. 200–207.

    PubMed  CAS  Google Scholar 

  66. Kelly, R., Bulfield, G., Collick, A., et al., Characterization of a Highly Unstable Mouse Minisatellite Locus: Evidence for Somatic Mutation During Early Development, Genomics, 1989, vol. 5, pp. 844–856.

    PubMed  CAS  Google Scholar 

  67. Gibbs, M., Collick, A., Kelly, R., and Jeffreys, A.J., A Tetranucleotide Repeat Mouse Minisatellite Displaying Substantial Somatic Instability During Early Preimplatation Development, Genomics, 1993, vol. 17, pp. 121–128.

    PubMed  CAS  Google Scholar 

  68. Bois, P., Williamson, J., Brown, J., et al., A Novel Unstable Mouse VNTR Family Expanded from SINE B1 Element, Genomics, 1998, vol. 49, pp. 122–128.

    PubMed  CAS  Google Scholar 

  69. Dubrova, Y.E., Plumb, M., Gutierrez, B., et al., Transgenerational Mutation by Radiation, Nature, 2000, vol. 405, p. 37.

    PubMed  CAS  Google Scholar 

  70. Barber, R., Plumb, M.A., Boulton, E., et al., Elevated Mutation Rates in the Germline of First-and Second-Generation Offspring of Irradiated Male Mice, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 6877–6882.

    PubMed  CAS  Google Scholar 

  71. Goodhead, D.T., Spatial and Temporal Distribution of Energy, Health Phys., 1988, vol. 55, pp. 231–240.

    PubMed  CAS  Google Scholar 

  72. Roderick, T.H., The Response of Twenty-Seven Inbred Strains of Mice to Daily Doses of Whole Body X-Irradiation, Radiat. Res., 1963, vol. 20, pp. 631–639.

    PubMed  CAS  Google Scholar 

  73. Ponnaiya, B., Cornforth, N.M., and Ullrich, R.L., Radiation-Induced Chromosomal Instability in BALB/c and C57BL/6 Mice: the Difference Is as Clear as Black and White, Radiat. Res., 1997, vol. 147, pp. 121–125.

    PubMed  CAS  Google Scholar 

  74. Yu, Y., Okayasu, R., Weil, M.M., et al., Elevated Breast Cancer Risk in Irradiated BALB/c Mice Associates with Unique Functional Polymorphism of the Prkdc (DNA-Dependent Protein Kinase Catalytic Subunit) Gene, Cancer Res., 2001, vol. 61, pp. 1820–1824.

    PubMed  CAS  Google Scholar 

  75. Watson, G.E., Lorimore, S.A., Clutton, S.M., et al., Genetic Factors Influencing Alpha-Particle-Induced Chromosomal Instability, Int. J. Radiat. Biol., 1997, vol. 71, pp. 497–503.

    PubMed  CAS  Google Scholar 

  76. Mothersill, C.E., O’Malley, K.J., Murphy, D.M., et al., Identification and Characterization of Three Subtypes of Radiation Response in Normal Human Urothelial Cultures Exposed to Ionizing Radiation, Carcinogenesis, 1999, vol. 20, pp. 2273–2278.

    PubMed  CAS  Google Scholar 

  77. Coates, P.J., Lorimore, S.A., Lindsay, K.J., and Wright, E.G., Tissue-Specific p53 Responses to Ionizing Radiation and Their Genetic Modification: the Key to Tissue-Specific Tumor Susceptibility?, J. Pathol., 2003, vol. 201, pp. 377–388.

    PubMed  CAS  Google Scholar 

  78. Mohrenweiser, H.W., Wilson, D.M., and Jones, I.M., Challenges and Complexities in Estimating Both the Functional Impact and the Disease Risk Associated with the Extensive Genetic Variation in Human DNA Repair Genes, Mutat. Res., 2003, vol. 526, pp. 93–125.

    PubMed  CAS  Google Scholar 

  79. Niwa, O. and Kominami, R., Untargeted Mutation of the Maternally Derived Mouse Hypervariable Minisatellite Allele in F1 Mice Born to Irradiated Spermatozoa, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 1705–1710.

    PubMed  CAS  Google Scholar 

  80. Krawetz, S.A., Paternal Contribution: New Insights and Future Challenges, Nat. Rev. Genet., 2005, vol. 6, pp. 633–642.

    PubMed  CAS  Google Scholar 

  81. Novina, C.D. and Sharp, P.A., The RNAi Revolution, Nature, 2004, vol. 480, pp. 161–164.

    Google Scholar 

  82. Kimmins, S. and Sassone-Corsi, P., Chromatin Remodelling and Epigenetic Features of Germ Cells, Nature, 2005, vol. 434, pp. 583–589.

    PubMed  CAS  Google Scholar 

  83. Rakyan, V.K., Preis, J., Morgan, H.D., and Whitelaw, E., The Marks, Mechanisms and Memory of Epigenetic States in Mammals, Biochem. J., 2001, vol. 356, pp. 1–10.

    PubMed  CAS  Google Scholar 

  84. Reik, W. and Walter, J., Genomic Imprinting: Parental Influence on the Genome, Nat. Rev. Genet., 2001, vol. 2, pp. 21–32.

    PubMed  CAS  Google Scholar 

  85. Roemer, I., Reik, W., Dean, W., and Klose, J., Epigenetic Inheritance in the Mouse, Current Biol., 1997, vol. 7, pp. 277–280.

    CAS  Google Scholar 

  86. Constancia, M., Pickard, B., Kelsey, G., and Reik, W., Imprinting Mechanisms, Genome Res., 1998, vol. 8, pp. 881–900.

    PubMed  CAS  Google Scholar 

  87. Holliday, R., The Inheritance of Epigenetic Defects, Science, 1987, vol. 238, pp. 163–170.

    PubMed  CAS  Google Scholar 

  88. Baulch, J.E., Raabe, O.G., and Wiley, L.M., Heritable Effects of Paternal Irradiation in Mice on Signalling Protein Kinase Activities in F3 Offspring, Mutagenesis, 2001, vol. 16 p, pp. 17–23.

    PubMed  CAS  Google Scholar 

  89. Vance, M.M., Baulch, J.E., Raabe, O.G., et al., Cellular Reprogramming in the F3 Mouse with Paternal F0 Radiation History, Int. J. Radiat. Biol., 2002, vol. 78, pp. 513–526.

    PubMed  CAS  Google Scholar 

  90. Harrouk, W., Codrington, A., Vinson, R., et al., Paternal Exposure to Cyclophosphamide Induces DNA Damage and Alters the Expression of DNA Repair Genes in the Rat Preimplantation Embryo, Mutat. Res., 2000, vol. 461, pp. 229–241.

    PubMed  CAS  Google Scholar 

  91. Nomura, T., Nakajima, H., Ryo, H., et al., Transgenerational Transmission of Radiation-and Chemically Induced Tumors and Congenital Anomalies in Mice: Studies of Their Possible Relationship to Induced Chromosomal and Molecular Changes, Cytogenet. Genome Res., 2004, vol. 104, pp. 252–260.

    PubMed  CAS  Google Scholar 

  92. Olsen, A-K., Lindeman, B., Wiger, R., et al., How Do Male Germ Cells Handle DNA Damage?, Toxicol. Appl. Pharmacol., 2005, vol. 207, pp. 521–531.

    PubMed  Google Scholar 

  93. Shimura, T., Inoue, M., Taga, M., et al., p53-Dependent S-Phase Damage Checkpoint and Pronuclear Cross Talk in Mouse Zygotes with X-Irradiated Sperm, Mol. Cell. Biol., 2002, vol. 22, pp. 2220–2228.

    PubMed  CAS  Google Scholar 

  94. Jones, P.A. and Baylin, S.B., The Fundamental Role of Epigenetic Events in Cancer, Nat. Rev. Genet., 2002, vol. 3, pp. 415–428.

    PubMed  CAS  Google Scholar 

  95. Esteller, M., Corn, P.G., Baylin, S.B., and Herman, J.G., A Gene Hypermethylation Profile of Human Cancer, Cancer Res., 2001, vol. 61, pp. 3225–3229.

    PubMed  CAS  Google Scholar 

  96. Herman, J.G., Umar, A., Polyak, K., et al., Incidence and Functional Consequences of HMLH1 Promoter Hypermethylation in Colorectal Carcinoma, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 6870–6875.

    PubMed  CAS  Google Scholar 

  97. Wheeler, J.M.D., Beck, N.E., Kim, H.C., et al., Mechanisms of Inactivation of Mismatch Repair Genes in Human Colorectal Cancer Cell Lines: The Predominant Role of HMLH1, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 10296–10301.

    PubMed  CAS  Google Scholar 

  98. Kassie, F., Parzefall, W., and Knasmuller, S., Single Cell Gel Electrophoresis Assay: A New Technique for Human Biomonitoring Studies, Mutat. Res., 2000, vol. 463, pp. 13–31.

    PubMed  CAS  Google Scholar 

  99. Rothkamm, K. and Lobrich, M., Evidence for a Lack of DNA Double-Strand Break Repair in Human Cells Exposed to Very Low X-Ray Doses, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 5057–5062.

    PubMed  CAS  Google Scholar 

  100. Jackson, A.L. and Loeb, L.A., The Contribution of Endogenous Sources of DNA Damage to the Multiple Mutations in Cancer, Mutat. Res., 2001, vol. 477, pp. 7–21.

    PubMed  CAS  Google Scholar 

  101. Collins, A.R. and Dusinska, M., Oxidation of Cellular DNA Measured with the Comet Assay, Methods Mol. Biol., 2002, vol. 186, pp. 147–159.

    PubMed  CAS  Google Scholar 

  102. Schar, P., Spontaneous DNA Damage, Genome Instability, and Cancer—When DNA Replication Escapes Control, Cell, 2001, vol. 104, pp. 329–332.

    PubMed  CAS  Google Scholar 

  103. Bartkova, J., Horejsi, Z., Koed, K., et al., DNA Damage Response as a Candidate Anti-Cancer Barrier in Early Human Tumorigenesis, Nature, 2005, vol. 434, pp. 864–870.

    PubMed  CAS  Google Scholar 

  104. Gorgoulis, V.G., Vassiliou, L.V., Karakaidos, P., et al., Activation of the DNA Damage Checkpoint and Genomic Instability in Human Precancerous Lesions, Nature, 2005, vol. 434, pp. 907–913.

    PubMed  CAS  Google Scholar 

  105. Breger, K.S., Smith, L., Turker, M.S., and Thayer, M.J., Ionizing Radiation Induces Frequent Translocations with Delayed Replication and Condensation, Cancer Res., 2004, vol. 64, pp. 8231–8238.

    PubMed  CAS  Google Scholar 

  106. Yauk, C.L., Dubrova, Y.E., Grant, G.R., and Jeffreys, A.J., A Novel Single Molecule Analysis of Spontaneous and Radiation-Induced Mutation at a Mouse Tandem Repeat Locus, Mutat. Res., 2002, vol. 500, pp. 147–156.

    PubMed  CAS  Google Scholar 

  107. Barber, R.C., Miccoli, L., van Buul, P.P.W., et al., Germline Mutation Rates at Tandem Repeat Loci in DNA-Repair Deficient Mice, Mutat. Res., 2004, vol. 554, pp. 287–295.

    PubMed  CAS  Google Scholar 

  108. Dickinson, H.O. and Parker, L., Leukaemia and Non-Hodgkin’s Lymphoma in Children of Male Sellafield Radiation Workers, Int. J. Cancer, 2002, vol. 99, pp. 437–444.

    PubMed  CAS  Google Scholar 

  109. Pearce, M.S., Dickinson, H.O., Aitkin, M., and Parker, L., Still-Birth among the Offspring of Male Radiation Workers at the Sellafield Nuclear Reprocessing Plant: Detailed Results and Statistical Aspects, J. R. Statist. Soc. A, 2002, vol. 165, pp. 523–548.

    Google Scholar 

  110. Li, Y-F. and Langholz, B., Maternal and Grandmaternal Smoking Patterns Are Associated with Early Childhood Asthma, Chest, 2005, vol. 127, pp. 1232–1241.

    PubMed  Google Scholar 

  111. Pembrey, M.E., Byrgen, L.O., Kaati, G., et al., Sex-Specific, Male-Line Transgenerational Responses in Humans, Eur. J. Hum. Genet., 2006, vol. 14, pp. 159–166.

    PubMed  Google Scholar 

  112. Suskov, I.I. and Kuz’mina, N.S., The Problem of Induced Genomic Instability in Children Exposed to Chronic Low-Dose Irradiation, Radiat. Biol. Radioekol., 2001, vol. 41, pp. 606–614.

    CAS  Google Scholar 

  113. Pilinskaya, M.A., Dibskii, S.S., Dibskaya, O.B, and Pedan, L.R., Chromosome Instability among the Offspring of Male Workers Irradiated during Chernobyl’s Accident, Tsitol. Genet., 2004, no. 4, pp. 32–40.

  114. Curwen, G.B., Winther, J.F., Tawn, E.J., et al., G2 Chromosomal Radiosensitivity in Danish Survivors of Childhood and Adolescent Cancer and Their Offspring, Br. J. Cancer, 2005, vol. 93, pp. 1038–1045.

    PubMed  CAS  Google Scholar 

  115. Tawn, E.J., Whitehouse, C.A., Winther, J.F., et al., Chromosome Analysis in Childhood Cancer Survivors and Their Offspring—No Evidence for Radiotherapy-Induced Persistent Genomic Instability, Mutat. Res., 2005, vol. 583, pp. 198–206.

    PubMed  CAS  Google Scholar 

  116. Butte, A., The Use and Analysis of Microarray Data, Nat. Rev. Drug Discov., 2002, vol. 1, pp. 951–960.

    PubMed  CAS  Google Scholar 

  117. UNSCEAR. Sources and Effects of Ionizing Radiation, vol. 1, New York: United Nations, 2000.

  118. Li, C-Y., Little, J.B., Hu, K., et al., Persistent Genetic Instability in Cancer Cells Induced by Non-DNA-Damaging Stress Exposures, Cancer Res., 2001, vol. 61, pp. 428–432.

    PubMed  CAS  Google Scholar 

  119. Bardelli, A., Cahill, D.P., Lederer, G., et al., Carcinogen-Specific Induction of Genetic Instability, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 5770–2775.

    PubMed  CAS  Google Scholar 

  120. Anway, M.D., Cupp, A.S., Uzumcu, M., and Skinner, M.K., Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility, Science, 2005, vol. 308, pp. 1466–1469.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.E. Dubrova, 2006, published in Genetika, 2006, Vol. 42, No. 10, pp. 1335–1347.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubrova, Y.E. Genomic instability in the offspring of irradiated parents: Facts and interpretations. Russ J Genet 42, 1116–1126 (2006). https://doi.org/10.1134/S1022795406100048

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406100048

Keywords

Navigation