Skip to main content
Log in

Genomic imprinting in epigenetic of mammals

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genomic imprinting is one of the most remarkable and important epigenetic phenomena. A biological ban on parthenogenetic and androgenetic development of mammals is an obvious consequence of genomic imprinting. Genomic imprinting defects may cause malformations, clinical syndromes, and tumor growth in humans and to the large offspring syndrome and an increased mortality after in vitro manipulations with early embryos in mammals. Differential expression of parental alleles during ontogeny implies a mechanism of reversible, selective marking of gene alleles. These relatively stable epigenetic modifications, which do not affect the primary nucleotide sequence of DNA, may be transmitted in somatic cell lines and reproduced in the germ line. The genomic imprinting mechanism may be involved in other epigenetic processes, such as epigenetic inheritance, nonrandom allele segregation, meiotic drive, etc. Artificial modulation of genomic imprinting effects with the use of growth factors and demethylating agents permits partial “normocoping” during the development of parthenogenetic mouse embryos. Targeted changes in the transcriptional activity of imprinted genes provide prerequisites for epigenetic correction of syndromes and diseases caused by genomic impriting defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holliday, R., Epigenetics: An Overview, Dev. Genet., 1994, vol. 15, pp. 453–457.

    PubMed  CAS  Google Scholar 

  2. Weinhold, B., Epigenetics: The Science of Change, Env. Health Persp., 2006, vol. 114, pp. a160–a167.

    Google Scholar 

  3. Konyukhov, B.V. and Platonov, E.S., Genomic Imrrinting in Mammals, Rus. J. Genet., 2001, vol. 37, no. 1, pp. 1–12 [Genetika, 2001, vol. 37, no. 1, pp. 5–17].

    CAS  Google Scholar 

  4. Surani, M.A.H., Imprinting and the Initiation of Gene Silencing in the Germ Line, Cell, 1998, vol. 93, pp. 309–312.

    PubMed  CAS  Google Scholar 

  5. Bartolomei, M.S. and Tilghman, S.M., Genomic Imprinting in Mammals, Ann. Rev. Genet., 1997, vol. 31, pp. 493–525.

    PubMed  CAS  Google Scholar 

  6. Solter, D., Imprinting, Int. J. Dev. Biol., 1998, vol. 42, pp. 951–954.

    PubMed  CAS  Google Scholar 

  7. Arney, K.L., Erhardt, S., Drewell, R.A., and Surani, M.A.H., Epigenetic Reprogramming of the Genome: From the Germ Line to the Embryo and Back Again, Int. J. Dev. Biol., 2001, vol. 45, no. 3, pp. 533–540.

    PubMed  CAS  Google Scholar 

  8. Li, E., Chromatin Modification and Epigenetic Reprogramming in Mammalian Development, Nat. Rev. Genet., 2002, vol. 3, pp. 662–673.

    PubMed  CAS  Google Scholar 

  9. Recillas-Targa, F., DNA Methylation, Chromatin Boundaries, and Mechanisms of Genomic Imprinting, Arch. Med. Res., 2002, vol. 33, pp. 428–438.

    PubMed  CAS  Google Scholar 

  10. Sleutels, F. and Barlow, D.P., The Origins of Genomic Impriting in Mammals, Adv. Genet., 2002, vol. 46, pp. 119–163.

    PubMed  CAS  Google Scholar 

  11. Surani, M.A. and Barton, S.C., Development of Gynogenetic Eggs in the Mouse: Implications for Parthenogenetic Embryos, Science, 1983, vol. 222, pp. 1034–1036.

    PubMed  CAS  Google Scholar 

  12. Surani, M.A.H., Barton, S.C., and Norris, M.L., Development of Reconstituted Mouse Eggs Suggests Imprinting of the Genome during Gametogenesis, Nature, 1984, vol. 308, pp. 548–550.

    PubMed  CAS  Google Scholar 

  13. McGrath, J. and Solter, D., Completion of Mouse Embryogenesis Requires Both the Maternal and Paternal Genomes, Cell, 1984, vol. 7, pp. 179–183.

    Google Scholar 

  14. McGrath, J. and Solter, D., Nuclear Transplantation in Mouse Embryos, J. Exp. Zool., 1983, vol. 228, pp. 355–362.

    PubMed  CAS  Google Scholar 

  15. Killian, J.K., Byrd, J.C., Jirtle, J.V., et al., M6P/IGF2R Imprinting Evolution in Mammals, Mol. Cell, 2000, vol. 5, pp. 707–716.

    PubMed  CAS  Google Scholar 

  16. O’Neill, M.J., Ingram, R.S., Vrana, P.B., and Tilghman, S.M., Allelic Expression of IGF2 in Marsupials and Birds, Dev. Gen. Evol., 2000, vol. 210, pp. 18–20.

    CAS  Google Scholar 

  17. McGowan, R.A. and Martin, C.C., DNA Methylation and Genome Imprinting in the Zebrafish, Danio rerio: Some Evolutionary Ramifications, Biochem. Cell Biol., 1997, vol. 75, pp. 499–506.

    PubMed  CAS  Google Scholar 

  18. Lloyd, V., Parental Imprinting in Drosophila, Genetics, 2000, vol. 109, pp. 35–44.

    CAS  Google Scholar 

  19. Baroux, C., Spillane, C., and Grossniklaus, U., Genomic Imprinting during Seed Development, Adv. Genet., 2002, vol. 46, pp. 165–214.

    PubMed  CAS  Google Scholar 

  20. Mammalian Genetics Unit, Harwell, United Kingdom, http://www.mgu.har.mrc.ac.uk/imprinting/imprinting.html.

  21. Cedar, H., DNA Metilation and Gene Activity, Cell, 1988, vol. 53, pp. 3–4.

    PubMed  CAS  Google Scholar 

  22. Surani, M.A.H., Kothary, R., Allen, N.D., et al., Genome Imprinting and Development in the Mouse, Development, 1990, vol. 110S.

  23. Razin, A. and Cedar, H., DNA Methylation and Genomic Imprinting, Cell, 1994, vol. 77, pp. 473–476.

    PubMed  CAS  Google Scholar 

  24. Bird, A.P. and Wollfe, A.P., Methylation-Induced Repression: Belts, Braces, and Chromatin, Cell, 1999, vol. 99, pp. 451–454.

    PubMed  CAS  Google Scholar 

  25. Reik, W. and Walter, J., Evolution of Imprinting Mechanisms: The Battle of Sexes Begins in the Zygote, Nat. Genet., 2001, vol. 27, pp. 255–256.

    PubMed  CAS  Google Scholar 

  26. Barlow, D.P., Competition: A Common Motif for the Imprinting Mechanism, The EMBO J., 1997, vol. 16, no. 52, pp. 6899–6905.

    CAS  Google Scholar 

  27. Shiota, K., Kogo, Y., Ohgane, J., et al., Epigenetic Marks by DNA Methylation Specific to Stem, Germ, and Somatic Cells in Mice, Gen. Cells, 2002, vol. 7, pp. 961–969.

    CAS  Google Scholar 

  28. Rakyan, V. and Whitelaw, E., Transgenerational Epigenetic Inheritance, Curr. Biol., 2003, vol. 13, p. R6.

    PubMed  CAS  Google Scholar 

  29. Latham, K.E., Strain-Specific Differences in Mouse Oocytes and Their Contributions to Epigenetic Inheritance, Development, 1994, vol. 120, pp. 3419–3426.

    PubMed  CAS  Google Scholar 

  30. Morgan, H.D., Sutherland, H.G.E., Martin, D.I.K., and Whitelaw, E., Epigenetic Inheritance at the Agouti Locus in the Mouse, Nat. Genet., 1999, vol. 23, pp. 314–318.

    PubMed  CAS  Google Scholar 

  31. Belyaev, D.K., Ruvinsky, A.O., and Borodin, P.M., Inheritance of Alternative States of the Fused Gene in Mice, J. Hered., 1981, vol. 72, pp. 107–112.

    PubMed  CAS  Google Scholar 

  32. Rakyan, V.K., Preis, J., Morgan, H.D., and Whitelaw, E., The Marks, Mechanisms and Memory of Epigenetic States in Mammals, Biochem. J., 2001, vol. 356, pp. 1–10.

    PubMed  CAS  Google Scholar 

  33. Allen, N.D., Norris, M.L., and Surani, M.A., Epigenetic Control of Transgene Expression and Imprinting by Genotype-Specific Modifiers, Cell, 1990, vol. 61, pp. 853–861.

    PubMed  CAS  Google Scholar 

  34. Robertson, G., Garrick, D., Wu, W., et al., Position-Dependent Variegation of Globin Transgene Expression in Mice, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 5371–5375.

    PubMed  CAS  Google Scholar 

  35. Dobie, K.W., Lee, M., Fantes, J.A., et al., Variegated Transgene Expression in Mouse Mammary Gland Is Determined by the Transgene Integration Locus, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 6659–6664.

    PubMed  CAS  Google Scholar 

  36. Sutherland, H.G., Kearns, M., Morgan, H.D., et al., Reactivation of Heritably Silenced Gene Expression in Mice, Mammal. Genome, 2000, vol. 11, pp. 347–355.

    CAS  Google Scholar 

  37. Kearns, M., Preis, J., McDonald, M., et al., Complex Patterns of Inheritance of an Imprinted Murine Transgene Suggest Incomplete Germline Erasure, Nucl. Acids Res., 2000, vol. 28, pp. 3301–3309.

    PubMed  CAS  Google Scholar 

  38. Mann, J.R., Imprinting in the Germ Line, Stem Cells, 2001, vol. 19, pp. 287–294.

    PubMed  CAS  Google Scholar 

  39. Okano, M., Bell, D.W., Harber, D.A., et al., DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for de Novo Methylation and Mammalian Development, Cell, 1999, vol. 99, pp. 247–257.

    PubMed  CAS  Google Scholar 

  40. Wolffe, A.P. and Hayes, J.J., Chromatin Disruption and Modification, Nucl. Acids Res., 1999, vol. 27, pp. 711–720.

    PubMed  CAS  Google Scholar 

  41. Turner, B.M., Birley, A.J., and Lavender, J., Histone H4 Isoforms Acetylated at Specific Lysine Residues Define Individual Chromosomes and Chromatin Domains in Drosophila Polytene Nuclei, Cell, 1992, pp. 375–384.

  42. Hong, L., Schroth, G.P., Matthews, H.R., et al., Studies of the DNA Binding Properties of Histone H4 Amino Terminus: Thermal Denaturation Studies Reveal That Acetylation Markedly Reduces the Binding Constant of the H4 “Tail” to DNA, J. Biol. Chem., 1993, vol. 268, pp. 305–314.

    PubMed  CAS  Google Scholar 

  43. Norton, V.G., Imai, B.S., Yau, P., and Bradbury, E.M., Histone Acetylation Reduces Nucleosome Core Particle Linking Number Change, Cell, 1989, vol. 57, pp. 449–457.

    PubMed  CAS  Google Scholar 

  44. Perry, C.A. and Annunziato, A.T., Influence of Histone Acetylation on the Solubility, H1 Content and DNase I Sensitivity of Newly Assembled Chromatin, Nucl. Acids Res., 1989, vol. 17, pp. 4275–4291.

    PubMed  CAS  Google Scholar 

  45. Garcia-Ramirez, M., Rocchini, C., and Ausio, J., Modulation of Chromatin Folding by Histone Acetylation, J. Biol. Chem., vol. 270, pp. 17 923–17 928.

  46. Turner, B.M., Histone Acetylation and an Epigenetic Code, BioEssays, 2000, vol. 22, pp. 836–845.

    PubMed  CAS  Google Scholar 

  47. Ueda, T., Abe, K., Miura, A., et al., The Paternal Methylation Imprint of the Mouse H19 Locus Is Acquired in the Gonocyte Stage during Foetal Testis Development, Genes Cells, 2000, vol. 5, pp. 649–659.

    PubMed  CAS  Google Scholar 

  48. Pardo-Manuel de Villena, F., de la Casa-Esperon, E., Briscoe, T.L., and Sapienza, C., A Genetic Test to Determine the Origin of Maternal Transmission Ratio Distortion: Meiotic Drive at the Mouse Om Locus, Genetics, 2000, vol. 154, pp. 333–342.

    PubMed  CAS  Google Scholar 

  49. Sturtevant, A.H. and Beadle, G.W., The Relations of Inversions in the X Chromosome of Drosophila melanogaster to Crossing over and Disjunction, Genetics, 1936, vol. 21, pp. 554–604.

    Google Scholar 

  50. Kaufman, M.A.H., Nonrandom Segregation during Mammalian Oogenesis, Nature, 1972, vol. 238, pp. 465–466.

    PubMed  CAS  Google Scholar 

  51. Rhoades, M.M., Preferential Segregation in Maize, Genetics, 1942, vol. 27, pp. 395–407.

    Google Scholar 

  52. Catcheside, D.G., Polarized Segregation in an Ascomycete, Ann. Bot., 1945, vol. 8, pp. 119–130.

    Google Scholar 

  53. Longley, A.E., Abnormal Segregation during Megasporogenesis in Maize, Genetics, 1945, vol. 30, pp. 100–113.

    Google Scholar 

  54. Novitski, E., Non-Random Disjunction in Drosophila, Genetics, 1951, vol. 36, pp. 267–280.

    PubMed  CAS  Google Scholar 

  55. Sandler, L. and Novitsky, E., Meiotic Drive As an Evolutionary Force, Am. Nat., 1957, vol. 91, pp. 105–110.

    Google Scholar 

  56. Sandler, L., Hiraizumi, Y., and Sandler, I., Meiotic Drive in Natural Populations of Drosophila melanogaster: The Cytogenetic Basis of Segregation Distortion, Genetics, 1959, vol. 44, pp. 233–250.

    Google Scholar 

  57. Zimmering, S., Sandler, L., and Nicoletti, B., Mechanisms of Meiotic Drive, Ann. Rev. Genet., 1970, vol. 4, pp. 409–436.

    PubMed  CAS  Google Scholar 

  58. Ganetzky, B., Yuichiro Hiraizumi and Forty Years of Segregation Distortion, Genetics, 1999, vol. 152, pp. 1–4.

    PubMed  CAS  Google Scholar 

  59. Lyttle, T.W., Segregation Distorters, Ann. Rev. Genet., 1991, vol. 25, pp. 511–557.

    PubMed  CAS  Google Scholar 

  60. Lyttle, T.W., Cheaters Sometimes Prosper: Distortion of Mendelian Segregation by Meiotic Drive, Trends Genet., 1993, vol. 9, pp. 205–210.

    PubMed  CAS  Google Scholar 

  61. Silver, L., The Peculiar Journey of a Selfish Chromosome: Mouse t Haplotype and Meiotic Drive, Trends Genet., 1993, vol. 9, pp. 250–254.

    PubMed  CAS  Google Scholar 

  62. Croteau, S., Andrade, M.F., Huang, F., et al., Inheritance Patterns of Maternal Alleles in Imprinted Regions of the Mouse Genome at Different Stages of Development, Mamm. Genome, 2002, vol. 13, pp. 24–29.

    PubMed  CAS  Google Scholar 

  63. Montagutelli, X., Turner, R., and Nadeau, J.H., Epistatic Control of Non-Mendelian Inheritance in Mouse Interspecific Crosses, Genetics, 1996, vol. 143, pp. 1739–1752.

    PubMed  CAS  Google Scholar 

  64. Zechner, U., Reule, M., Orth, A., et al., An X-Chromosome Linked Locus Contributes to Abnormal Placental Development in Mouse Interspecific Hybrid, Nat. Genet., 1996, vol. 12, pp. 398–403.

    PubMed  CAS  Google Scholar 

  65. Zechner, U., Reule, M., Burgoyne, P.S., et al., Paternal Transmission of X-Linked Placental Dysplasia in Mouse Interspecific Hybrids, Genetics, 1997, vol. 146, pp. 1399–1405.

    PubMed  CAS  Google Scholar 

  66. Naumova, A.K., Leppert, M., Barker, D.F., et al., Parental Origin-Dependent, Male Offspring-Specific Transmission-Ratio Distortion at Loci on the Human X Chromosome, Am. J. Hum. Genet., 1998, vol. 62, pp. 1493–1499.

    PubMed  CAS  Google Scholar 

  67. Isaev, D.A., Zaeva, V.V., Bolt, A.I., and Volodina, O.Yu., Assisted Reproduction of Humans and Genomic Imprinting Diseases, Probl. Reprod., 2005, no. 2, pp. 14–18.

  68. Murphy, S.K. and Jirtle, R.L., Imprinted Genes As Potential Genetic and Epigenetic Toxicologic Targets, Env. Health Persp., 2000, vol. 108,suppl. 1, pp. 5–11.

    CAS  Google Scholar 

  69. Willadsen, S.M., Janzen, R.E., McAlister, R.J., et al., The Viability of Late Morulae and Blastocysts Produced by Nuclear Transplantation in Cattle, Theriogenology, 1991, vol. 35, pp. 161–170.

    Google Scholar 

  70. Walker, S.K., Hartwich, K.M., and Seamark, R.F., The Production of Unusually Large Offspring Following Embryo Manipulation: Concepts and Challenges, Theriogenology, 1996, vol. 45, pp. 111–120.

    Google Scholar 

  71. Young, L.E., Butterwith, S.C., and Wilmut, I., Increased Ovine Fetal Weight Following Transient Asynchronous Embryo Transfer Is not Associated with Increased Placental Weight at Day 21 of Gestation, Theriogenology, 1996, vol. 45, p. 231.

    Google Scholar 

  72. Kruip, T.A.M. and den Daas, J.H.G., In Vitro Produced and Cloned Embryos: Effects on Pregnancy, Parturition and Offspring, Theriogenology, 1997, vol. 47, pp. 43–52.

    Google Scholar 

  73. Garry, F.B., Adams, R., McCann, J.P., and Odde, K.G., Postnatal Characteristics of Calves Produced by Nuclear Transfer Cloning, Theriogenology, 1996, vol. 45, pp. 141–152.

    Google Scholar 

  74. Ranilla, M.J., Gebbie, F.E., King, M.E., et al., The Incidence of Embryo and Fetal Loss Following the Transfer of in Vitro-Cultured Sheep Embryos, Theriogenology, 1998, vol. 49, p. 248.

    Google Scholar 

  75. Walker, S.K., Heard, T.M., and Seamark, R.F., In Vitro Culture of Sheep Embryos without Co-culture: Successes and Perspectives, Theriogenology, 1992, vol. 37, pp. 111–126.

    Google Scholar 

  76. Hasler, J.F., Henderson, W.B., Hurtgen, P.J., et al., Production, Freezing, and Transfer of Bovine IVF Embryos and Subsequent Calving Results, Theriogenology, 1995, vol. 43, pp. 141–152.

    Google Scholar 

  77. Sinclair, K.D., McEvoy, T.G., Carolan, C., et al., Conceptus Growth and Development Following in Vitro Culture of Ovine Embryos in Media Supplemented with Bovine Sera, Theriogenology, 1998, vol. 49, p. 218.

    Google Scholar 

  78. Sinclair, K.D., Maxfield, E.K., Robinson, J.J., et al., Culture of Sheep Zygotes Can Alter Fetal Growth and Development, Theriogenology, 1997, vol. 47, p. 380.

    Google Scholar 

  79. Maxfield, E.K., Sinclair, K.D., Dolman, D.F., et al., In Vitro Culture of Sheep Embryos Increases Weight, Primary Fibre Size and Secondary to Primary Fibre Ratio in Fetal Muscle at Day 61 of Gestation, Theriogenology, 1996, vol. 47, p. 376.

    Google Scholar 

  80. Schmidt, M., Greve, T., Avery, B., et al., Pregnancies, Calves and Calf Viability after Transfer of in Vitro Produced Bovine Embryos, Theriogenology, 1996, vol. 46, pp. 527–539.

    PubMed  Google Scholar 

  81. Eggan, K., Akutsu, H., Loring, J., et al., Hybrid Vigor, Fetal Overgrowth, and Viability of Mice Derived by Nuclear Cloning and Tetraploid Embryo Complementation, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 6209–6214.

    PubMed  CAS  Google Scholar 

  82. Young, L.E., Fernandes, K., McEvoy, T.G., et al., Epigenetic Change in IGF2R Is Associated with Fetal Overgrowth after Sheep Embryo Culture, Nat. Genet., 2001, vol. 27, pp. 153–154.

    PubMed  CAS  Google Scholar 

  83. Cox, G.F., Burger, J.L., Mau, U.A., et al., Intracytoplasmic Sperm Injection May Increase the Risk of Imprinting Defects, Am. J. Hum. Genet., 2002, vol. 71, pp. 162–164.

    PubMed  CAS  Google Scholar 

  84. De Baun, M.R., Neimitz, E.L., and Feinberg, A.P., Association of in Vitro Fertilization with Beckwith-Wiedemann Syndrome and Epigenetic Alterations of LIT1 and H19, J. High Resolut. Chromatogr. Chromatogr. Commun., 2003, vol. 72, pp. 156–160.

    Google Scholar 

  85. Maher, T.R., Brueton, L.A., Bowdin, S.C., et al., Beckwith-Wiedemann Syndrome and Assisted Reproduction Technology (ART), J. Med. Genet., 2003, vol. 40, pp. 62–64.

    PubMed  CAS  Google Scholar 

  86. Doherty, A.S., Mann, M.R., Tremblay, K.D., et al., Differential Effects of Culture on Imprinted H19 Expression in the Preimplantation Mouse Embryo, Biol. Reprod., 2000, vol. 62, no. 6, pp. 1526–1535.

    PubMed  CAS  Google Scholar 

  87. Reik, W., Genomic Imprinting and Genetic Disorders in Man, Trends Genet., 1989, vol. 5, pp. 331–336.

    PubMed  CAS  Google Scholar 

  88. Puzyrev, V.P., Genome Liberties and Medical Pathogenetics, Byull. Sib. Med., 2002, no. 2, pp. 16–29.

  89. Clayton-Smith, J., Genomic Imprinting As a Cause of Disease, BMJ, 2003, vol. 327, pp. 1121–1122.

    PubMed  Google Scholar 

  90. Shinin, V.V. and Zorin, S.A., The Role of Genomic Imprinting in Human Hereditary Pathology, Med. Nauchn. Uch.-Metod. Zh., 2001, no. 4, pp. 101–103.

  91. Weksberg, R., Smith, A.C., Squire, J., and Sadowski, P., Beckwith-Wiedemann Syndrome Demonstrates a Role for Epigenetic Control of Normal Development, Hum. Mol. Genet., 2003, vol. 12, no. 1, pp. R61–R68.

    PubMed  CAS  Google Scholar 

  92. Vu, T.H., Chuyen, N.V., Li, T., and Hoffman, A.R., Loss of Imprinting of IGF2 Sense and Antisense Transcripts in Wilms’ Tumor, Cancer Res., 2003, vol. 63, pp. 1900–1905.

    PubMed  CAS  Google Scholar 

  93. Hoyme, H.E., Seaver, L.H., Jones, K.L., et al., Isolated Hemihyperplasia (Hemihypertrophy): Report of a Prospective Multicenter Study of the Incidence of Neoplasia and Review, Am. J. Med. Genet., 1998, vol. 79, pp. 274–278.

    PubMed  CAS  Google Scholar 

  94. Hartmann, W., Waha, A., Koch, A., et al., P57(KIP2) Is Not Mutated in Hepatoblastoma but Shows Increased Transcriptional Activity in a Comparative Analysis of the Three Imprinted Genes p57(KIP2), IGF2, and H19, Am. J. Pathol., 2000, vol. 157, pp. 1393–1403.

    PubMed  CAS  Google Scholar 

  95. Zhang, Z., Zhou, Y., Mehta, K.R., et al., A Pituitary-Derived MEG3 Isoform Functions As a Growth Supressor in Tumor Cells, J. Clin. Endocrinol. Metab., 2003, vol. 88, pp. 5119–5126.

    PubMed  CAS  Google Scholar 

  96. Farber, C., Dittrich, B., Buiting, K., and Horsthemke, B., The Chromosome 15 Imprinting Centre (IC) Region Has Undergone Multiple Duplication Events and Contains an Upstream Exon of SNRPN That Is Deleted in All Angelman Syndrome Patients with an IC Microdeletion, Hum. Mol. Genet., 1999, vol. 8, pp. 337–343.

    PubMed  CAS  Google Scholar 

  97. Berry, R.J., Leither, R.P., Clarke, A.R., and Einfeld, S.L., Behavioral Aspects of Angelman Syndrome: A Case Control Study, Am. J. Med. Genet., 2005, vol. 132A, pp. 8–12.

    Google Scholar 

  98. Varela, M., Kok, F., Setian, N., et al., Impact of Molecular Mechanisms, Including Deletion Size, on Prader-Willi Syndrome Phenotype: Study of 75 Patients, Clin. Genet., 2005, vol. 67, pp. 47–52.

    PubMed  CAS  Google Scholar 

  99. Watrin, F., Le Meur, E., Roeckel, N., et al., The Prader-Willi Syndrome Murine Imprinting Center Is not Involved in the Spatio-temporal Transcriptional Regulation of the Necdin Gene, BMC Gene., 2005, vol. 6, pp. 1–12.

    Google Scholar 

  100. Barlow, D.H., The Children of Assisted Reproduction: The Need for an Ongoing Debate, Hum. Reprod., 2002, vol. 17, pp. 1133–1134.

    PubMed  Google Scholar 

  101. Schieve, L.A., Meikle, S.F., Ferre, C., et al., Low and Very Low Birth Weight in Infants Conceived with Use of Assisted Reproductive Technology, N. Engl. J. Med., 2002, vol. 346, pp. 731–737.

    PubMed  Google Scholar 

  102. Gicquel, C., Gaston, V., Mandelbaum, J., et al., In Vitro Fertilization May Increase the Risk of Beckwith-Wiedemann Syndrome Related to the Abnormal Imprinting of the KCN1OT Gene, Am. J. Hum. Genet., 2003, vol. 72, pp. 1338–1341.

    PubMed  CAS  Google Scholar 

  103. Orstavik, K.H., Eiklid, K., van der Hagen, C.B., et al., Another Case of Imprinting Defect in a Girl with Angelman Syndrome Who Was Conceived by Intracytoplasmic Semen Injection, Am. J. Hum. Genet., 2003, vol. 72, pp. 218–219.

    PubMed  CAS  Google Scholar 

  104. Moll, A.C., Imhof, S.M., Cruysberg, J.R., et al., Incidence of Retinoblastoma in Children Born After in Vitro Fertilization, Lancet, 2003, vol. 361, pp. 309–310.

    PubMed  Google Scholar 

  105. Maher, E.R., Afnan, M., and Barratt, C.L., Epigenetic Risks Related to Assisted Reproductive Technologies: Epigenetics, Imprinting, ART and Icebergs?, Hum. Reprod., 2003, vol. 18, pp. 2508–2511.

    PubMed  Google Scholar 

  106. Jirtle, R.L., Genomic Imprinting and Cancer, Exp. Cell Res., 1999, vol. 248, pp. 18–24.

    PubMed  CAS  Google Scholar 

  107. Tzukerman, V., Rosenberg, T., Ravel, Y., et al., An Experimental Platform Studying Growth and Invasiveness of Tumor Cells within Teratomas Derived from Human Embryonic Stem Cells, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no. 23, pp. 13507–13512.

    PubMed  CAS  Google Scholar 

  108. Onishchenko, N.A., Cell Technologies and Modern Medicine, Zh. Patol. Fiziol. Eksp. Terap., 2004, no. 4, pp. 2–10.

  109. Solter, D., Mammalian Cloning: Advances and Limitations, Nature Rev. Genet., 2000, vol. 1, pp. 199–207.

    CAS  Google Scholar 

  110. Penkov, L.I. and Dimitrov, B.D., Cloning and Parthenogenesis: Achievements and Perspectives, Gene. Breed., 2004, vol. 33, nos. 1–2, pp. 11–21.

    Google Scholar 

  111. Pincus, G. and Enzman, E.V., The Comparative Behavior of Mammalian Eggs in Vitro and in Vivo: 2. The Activation of the Tubal Eggs of the Rabbit, J. Exp. Zool., 1936, vol. 73, pp. 195–208.

    Google Scholar 

  112. Dyban, A.P. and Khozhai, L.I., Parthenogenetic Development of Ovulated Murine Ova Treated with Ethyl Alcohol, Byull. Eksp. Biol. Med., 1980, vol. 139, pp. 487–489.

    Google Scholar 

  113. Kaufman, M.H., Early Mammalian Development: Parthenogenetic Studies, Cambridge: Cambridge Univ. Press, 1983.

    Google Scholar 

  114. Kaufman, M.H., Barton, S.C., and Surani, M.A.H., Normal Postimplantation Development of Mouse Parthenogenetic Embryos to the Forelimb Bud Stage, Nature, 1977, vol. 265, pp. 53–55.

    PubMed  CAS  Google Scholar 

  115. Penkov, L.I., Platonov, E.S., and New, D.A.T., Prolonged Development of Normal and Parthenogenetic Postimplantation Mouse Embryos in Vitro, Int. J. Dev. Biol., 1995, vol. 39, pp. 985–991.

    PubMed  CAS  Google Scholar 

  116. Penkov, L.I. and Platonov, E.S., Study of the Development of Diploid Parthenogenetic Embryos of Inbred C57BL/6 and CBA Mice, Ontogenez, 1992, vol. 23, no. 4, pp. 364–369.

    PubMed  CAS  Google Scholar 

  117. Cuthbertson, K.C.R., Parthenogenetic Activation of Mouse Oocytes in Vitro with Ethanol and Benzyl Alcohol, J. Exp. Zool., 1983, vol. 226, pp. 311–314.

    PubMed  CAS  Google Scholar 

  118. Konyukhov, B.V. and Isaev, D.A., The Use of Chimeric Mice to Study Genome Imprinting Effects, Ontogenez, 2000, vol. 31, no. 5, pp. 302–308.

    CAS  Google Scholar 

  119. Isaev, D.A., Platonov, E.S., and Konyukhov, B.V., The Distribution of Parthenogenetic Clones of Epidermal Melanoblasts in C57BL/6(PG) ↔ BALB/c Chimeric Mice, Ontogenez, 1997, vol. 28, no. 4, pp. 306–313.

    PubMed  CAS  Google Scholar 

  120. Isaev, D.A., Mironova, O.V., Platonov, E.S., and Konyukhov, B.V., Analysis of Parthenogenetic Cell Clones in C57BL/6(PG) ↔ BALB/c Chimeric Mice, Ontogenez, 1999, vol. 30, no. 1, pp. 64–70.

    PubMed  CAS  Google Scholar 

  121. Isaev, D.A., Martynova, M.Yu., Platonov, E.S., and Konyukhov, B.V., Different Effects of Genomic Imprinting on the Development of Parthenogenetic Cell Clones of C57BL/6 and CBA Chimeric Mice, Ontogenez. 2001, vol. 32, no. 5, pp. 353–359.

    PubMed  CAS  Google Scholar 

  122. Lyashenko, A.A. and Uvarov, V.Yu., On Cytokine Systematics, Usp. Sovrem. Biol., 2001, vol. 121, no. 6, pp. 589–603.

    CAS  Google Scholar 

  123. Bochkov, N.P., Vklad genetiki v meditsinu (The Contribution of Genetics into Medicine), Moscow: Russkii Vrach, 2001.

    Google Scholar 

  124. Coulier, F., Pontarotti, P., Roubin, R., et al., Of Worms and Men: An Evolutionary Perspective on the Fibroblast Growth Factor (FGF) and FGF Receptor Families, J. Mol. Evol., 1997, vol. 44, pp. 43–56.

    PubMed  CAS  Google Scholar 

  125. Keresztes, M. and Boonstra, J., Import(ance) of Growth Factors in(to) the Nucleus, J. Cell Biol., 1999, vol. 145, pp. 421–424.

    PubMed  CAS  Google Scholar 

  126. Rappolee, D.A., Sturm, K.S., Behrendtsen, O., et al., Insulin-Like Growth Factor II Acts through an Endogenous Growth Pathway Regulated by Imprinting in Early Mouse Embryos, Gen. Dev., 1992, vol. 6, no. 6, pp. 939–952.

    CAS  Google Scholar 

  127. Robertson, E.J., Insulin-Like Growth Factors, Imprinting and Embryonic Growth Control, Semin. Dev. Diol., 1995, vol. 6, pp. 293–299.

    Google Scholar 

  128. Adamson, E.D., Growth Factors and Their Receptors in Development, Dev. Genet., 1993, vol. 14, pp. 159–164.

    PubMed  CAS  Google Scholar 

  129. Lysiak, J.J., Han, V.K., and Lala, P.K., Localization of Transforming Growth Factor Alpha in the Human Placenta and Decidua: Role in Trophoblast Growth, Biol. Reprod., 1993, vol. 49, no. 5, pp. 885–894.

    PubMed  CAS  Google Scholar 

  130. Newman-Smith, E.D. and Werb, Z., Stem Cell Defects in Parthenogenetic Periimplantation Embryos, Development, 1995, vol. 121, pp. 2069–2077.

    PubMed  CAS  Google Scholar 

  131. Lovicu, F.J. and Overbeek, P.A., Overlapping Effects of Different Members of the FGF Family on Lens Fiber Differentiation in Transgenic Mice, Development, 1998, vol. 125, pp. 3365–3377.

    PubMed  CAS  Google Scholar 

  132. Penkov, L.I. and Platonov, E.S., Effect of Fibroblast Growth Factors (FGF2 and FGF4) on the Development of Parthenogenetic Mouse Embryos, Ontogenez, 1999, vol. 30, no. 6, pp. 448–452.

    PubMed  CAS  Google Scholar 

  133. Penkov, L.I., Platonov, E.S., and New, D.A.T., Effects of Fibroblast Growth Factor 2 and Insulin-Like Growth Factor II on the Development of Parthenogenetic Mouse Embryos in Vitro, In Vitro Animal, 2001, vol. 37, pp. 440–444.

    PubMed  CAS  Google Scholar 

  134. Beechey, C.V. and Cattanach, B.M., Genetic Imprinting Map, Mouse Genome, 1996, vol. 94, pp. 96–99.

    Google Scholar 

  135. Constancia, M., Pickard, B., Kesley, G., et al., Imprinting Mechanisms, Genome Res., 1998, vol. 8, pp. 881–900.

    PubMed  CAS  Google Scholar 

  136. Rostamzadeh, J., Penkov, L.I., Platonov, E.S., et al., Expression of Igf2 Imprinted Gene in TGFα Treated Parthenogenetic Mouse Embryos, in Genomic Imprinting Workshop 2004: Twenty Years of Mammalian Genomic Imprinting (Abstr. Int. Conference, Montpellier, 2004).

  137. Kono, T., Obata, Y., Yoshimzu, T., et al., Epigenetic Modifications during Oocyte Growth Correlates with Extended Parthenogenetic Development in the Mouse, Nat. Genet., 1996, vol. 13, no. 1, pp. 91–94.

    PubMed  CAS  Google Scholar 

  138. Obata, Y., Kaneko-Ishino, T., Koide, T., et al., Disruption of Primary Imprinting during Oocyte Growth Leads to the Modified Expression of Imprinted Genes during Embryogenesis, Development, 1998, vol. 125, no. 8, pp. 1553–1560.

    PubMed  CAS  Google Scholar 

  139. Kono, T., Obata, T., Wu, O., et al., Birth of Parthenogenetic Mice That Can Develop to Adulthood, Nature, 2004, vol. 428, pp. 860–864.

    PubMed  CAS  Google Scholar 

  140. Kono, T., Genomic Imprinting Is a Barrier to Parthenogenesis in Mammals, Cytogenet. Genome Res., 2006, vol. 113, pp. 31–35.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.S. Platonov, D.A. Isaev, 2006, published in Genetika, 2006, Vol. 42, No. 9, pp. 1235–1249.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platonov, E.S., Isaev, D.A. Genomic imprinting in epigenetic of mammals. Russ J Genet 42, 1030–1042 (2006). https://doi.org/10.1134/S1022795406090092

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406090092

Keywords

Navigation