Skip to main content
Log in

Intracellular iron ions regulate the genetic activity of NO-donating agents

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This work is a part of a directional search for new crystal donors of nitric oxide (NO), which are promising for complex chemotherapy. The relationships between the physico-chemical properties of NO donors, their genotoxic and mutagenic activities, and the dependence on intracellular iron were studied. New crystal NO donors (di-and trinitrosyl iron complexes with synthetic ligands) were examined for the first time and compared with known NO donors containing natural ligands. All but one compound induced expression of the Escherichia coli sfiA gene belonging to the SOS regulon and exerted a mutagenic effect on Salmonella typhimurium TA1535. These effects were fully or significantly inhibited by the iron(II)-chelating agent o-phenanthrolin, depending on the mono-or binuclear structure of the ligands. The rate of donating free NO in solution did not positively correlate with the genotoxic activity of the crystal NO donors. The genetic activity of all NO donors proved to depend on intracellular iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vanin, A.F., Nitric Oxide in Biology: History, State of Art, and Research Perspectives, Biokhimiya, 1998, vol. 63, no. 7, pp. 867–869.

    Google Scholar 

  2. Hemish, J., Nakaya, N., Mittal, V., et al., Nitric Oxide Activates Diverse Signaling Pathways to Regulate Gene Expression, J. Biol. Chem., 2003, vol. 278, no. 43, pp. 42321–42329.

    Article  PubMed  CAS  Google Scholar 

  3. Vasil'eva, S.V., Stupakova, M.V., Lobysheva, I.I., et al., Activation of the Escherichia coli SoxRS-Regulon by Nitric Oxide and Its Physiological Donating Agents, Biokhimiya, 2001, vol. 66, no. 9, pp. 1209–1214.

    Google Scholar 

  4. Storz, G. and Imlay, J.A., Oxidative Stress, Curr. Opin. Microbiol., 1999, vol. 2, pp. 188–194.

    Article  PubMed  CAS  Google Scholar 

  5. Lobysheva, I.I., Stupakova, M.V., Mikoyan, V.D., et al., Induction of the SOS DNA Repair Response in Escherichia coli by Nitric Oxide Donating Agents: Dinitrosyl Iron Complexes with Thiol-Containing Ligands and S-Nitrosothiols, FEBS Lett., 1999, vol. 454, pp. 177–180.

    Article  PubMed  CAS  Google Scholar 

  6. Vasil'eva, S.V. and Moshkovskaya, E.Yu., Quasi-Adaptive Response to Alkylating Agents in Escherichia coli: A New Phenomenon, Rus. J Genet., 2005, vol. 41, no. 5, pp. 484–488.

    Article  CAS  Google Scholar 

  7. Kleibl, K., Molecular Mechanisms of Adaptive Response to Alkylating Agents in Escherichia coli and Some Remarks on O6-Methylguanine-DNA-Methyltransferase in Other Organisms, Mutat. Res., 2002, vol. 512, pp. 67–84.

    Article  PubMed  CAS  Google Scholar 

  8. Beda, N.V., Pimenova (Suntsova) T.P., Nedospasov, A.A., Nitric Oxide in Signal and Defense Systems of the Organism, in Problemy i perspektivy molekulyarnoi genetiki (Problems and Perspectives of Molecular Genetics), Moscow: Nauka, 2004, vol. 2, pp. 237–301.

    Google Scholar 

  9. Liu, L., Xu-Welliver, M., Kanugula, S., and Pegg, A.E., Inactivation and Degradation of O6-Alkylguanine-DNA Alkyltransferase After Reaction with Nitric Oxide, Cancer Res., 2002, vol. 62, pp. 3037–3043.

    PubMed  CAS  Google Scholar 

  10. Wink, D.A., Kasprzak, K.S., Maragos, C.M., et al., DNA Deaminating Ability and Genotoxicity of Nitric Oxide and Its Progenitors, Science, 1991, vol. 254, pp. 1001–1003.

    PubMed  CAS  Google Scholar 

  11. Zhuang, J.C., Lin, C., Lin, D., et al., Mutagenesis Associated with Nitric Oxide Production in Macrophages, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 8286–8291.

    Article  PubMed  CAS  Google Scholar 

  12. Christen, S., Gee, P., and Ames, B.N., Mutagenicity of Nitric Oxide in Base-Pair Specific Salmonella Tester Strains: TA 7000 Series, Methods Enzymol., 1996, vol. 269, pp. 267–278.

    Article  PubMed  CAS  Google Scholar 

  13. Abu-Shakra, A., McQueen, E.T., and Cunningham, M.L., Rapid Analysis of Base-Pair Substitutions Induced by Mutagenic Drugs Through Their Oxygen Radicals or Epoxide Derivatives, Mutat. Res., 2000, vol. 470, pp. 11–18.

    PubMed  CAS  Google Scholar 

  14. Vanin, A.F., Kubrina, I.N., Lisovskaya, I.L., et al., Endogenous Nitrosyl Complexes of Heme and Non-Heme Iron in Microorganisms and Animal Tissues, Biofizika, 1971, vol. 16, pp. 650–656.

    PubMed  CAS  Google Scholar 

  15. Sanina, N.A., Chuev, I.I., Aldoshin, S.M., et al., Synthesis, Crystal Structure, Mossbauer Spectra, and Redox Properties of Binuclear and Tetranuclear Iron-Sulfur Nitrosyl Clusters, Russ. Chem. Bull., 2000, vol. 49, no. 3, p. 444.

    CAS  Google Scholar 

  16. Aldoshin, S.M., Sanina, N.A., Rakova, O.A., et al., New Class of Neutral Paramagnetic Binuclear Sulfur-Containing Nitrosyl Complexes, Russ. Chem. Bull., 2003, vol. 52, no. 8, pp. 1702–1708.

    Article  CAS  Google Scholar 

  17. Vasil'eva, S.V., Moshkovskaya, E.Yu., Sanina, N.A., et al., Analysis of SOS and SoxRS-Inducing Activity of Thiosulfate and Nitrosyl Iron Complexes as the Mediators of Cellular DNA Oxidative Damage Protection, Dokl. Akad. Nauk, 2005, vol. 402, no. 5, pp. 1–4.

    Google Scholar 

  18. Vasil'eva, S.V., Moshkovskaya, E.Yu., Sanina, N.A., et al., Transduction of Genetic Signal by Nitrosyl Iron Complexes, Biokhimiya, 2004, vol. 69, pp. 1089–1095.

    Google Scholar 

  19. Puig, S., Post-Transcriptional Control of Iron-Dependent Pathways in Saccharomyces cerevisiae, BioIron 2005. I Congress of the Internat. BioIron Soc. 22–26 May, Prague, 2005, p. 4.

  20. Konovalova, N.P., Goncharova, S.A., Volkova, L.M., et al., Nitric Oxide Donating Agent Increases Efficiency of Cytostatic Therapy and Suppresses the Development of Drug Resistance, Vopr. Onkol., 2003, vol. 49, no. 1, pp. 71–75.

    PubMed  CAS  Google Scholar 

  21. Quillardet, P. and Hofnung, M., The SOS Chromotest, a Colorimetric Bacterial Assay for Genotoxins: Procedures, Mutat. Res., 1985, vol. 147, pp. 65–78.

    PubMed  CAS  Google Scholar 

  22. Maron, D.M. and Ames, B.N., Revised Methods for the Salmonella Mutagenicity Test, Mutat. Res., 1983, vol. 113, pp. 173–215.

    PubMed  CAS  Google Scholar 

  23. Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor: Cold Spring Harbor Lab., 1972.

    Google Scholar 

  24. Vasil'eva, S.V., Stupakova, M.V., and Lobysheva, I.I., The Role of Nitric Oxide in the Development of SOS-Inducing Signal in Escherichia coli, Rad. Biol. Radioekol., 2003, vol. 43, no. 4, pp. 464–469.

    Google Scholar 

  25. White, P.A. and Rasmussen, J.B., SOS Chromotest Results in a Broader Context: Empirical Relationships between Genotoxic Potency, Mutagenic Potency, and Carcinogenic Potency, Env. Mol. Mutagen., 1996, vol. 27, pp. 270–305.

    Article  CAS  Google Scholar 

  26. Vanin, A.F., Nitric Oxide: Regulation of Cellular Metabolism without the Involvement of Cell Receptor System, Biofizika, 2001, vol. 46, no. 4, pp. 631–641.

    PubMed  CAS  Google Scholar 

  27. Yasunaga, K., Kiyonari, A., Oikawa, T., et al., Evaluation of the Salmonella Umu Test with 83 NTP Chemicals, Env. Mol. Mutagen., 2004, vol. 44, pp. 329–345.

    Article  CAS  Google Scholar 

  28. Bridges, B., DNA Polymerases and SOS Mutagenesis: Can One Reconcile the Biochemical and Genetic Data?, BioAssays, 2000, vol. 22, no. 10, pp. 933–937.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Vasilieva, E.Ju. Moschkovskaya, A.S. Terekhov, N.A. Sanina, S.M. Aldoschin, 2006, published in Genetika, 2006, Vol. 42, No. 7, pp. 904–911.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasilieva, S.V., Moschkovskaya, E.J., Terekhov, A.S. et al. Intracellular iron ions regulate the genetic activity of NO-donating agents. Russ J Genet 42, 737–743 (2006). https://doi.org/10.1134/S1022795406070064

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406070064

Keywords

Navigation