Skip to main content
Log in

Evolutionary relationships among narrow-headed rats (genus Stenocephalemys, muridae, rodentia) inferred from complete cytochrome b gene sequences

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Using the data on complete sequences of cytochrome b gene, phylogenetic relationships were studied among the Stenocephalemys s. lat. (Stenocephalemys spp. + Praomys albipes) murine rodents, inhabiting adjacent altitudinal belts of the isolated Ethiopian mountain massifs, and among the related Praomys s. lat. species. Extremely low resolution of the relationships among the main Praomys s. lat. lineages hampered identification of the nearest sister group for the Stenocephalemys s. lat. “Ethiopian” clade, monophyly of which was strongly supported. Sister relationships between P. albipes and S. griseicauda (implying “accelerated” morphological and chromosomal evolution upon the formation of the former species), as well as between S. albocaudata and the recently described novel chromosomal form of Stenocephalemus sp. A (2n = 50; NFa = 56) were demonstrated. Definite discordance between the rates of their molecular, chromosomal, and morphological evolution was revealed. Based on phylogenetic reconstructions and the estimates of the divergence time, obtained by use of molecular clock method, an attempt to draw an evolutionary scenario for the group examined was made. The obtained data were compared to those for Sigmodontinae species complexes, distributed across a marked altitudinal gradient on the Andean slopes. It was shown that molecular genetic data on the rodents from mountain tropics did not support the gradient model of diversification, based on the possibility of diversification of the forms up to their achievement of the species rank (without interruption of the gene flow between them) due to differently directed selection across a strong environmental gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vorontsov, N.N., Razvitie evolyutsionnykh idei v biologii (Development of Evolutionary Ideas in Biology), Moscow: UNTs DO Mosk. Gos. Univ., 1999.

    Google Scholar 

  2. Vences, M., Madagaskar As a Model Region for the Study of Tempo and Pattern in Adaptive Radiations, African Biodiversity: Molecules, Organisms, Ecosystems, Huber, B.A., Sinclair, B.J., and Lampe, K.-H., Eds., New York: Springer, 2005, pp. 69–84.

    Google Scholar 

  3. Lavrenchenko, L.A., Milishnikov, A.N., Aniskin, V.M., and Warshavsky, A.A., Systematics and Phylogeny of the Genus Stenocephalemys Frick, 1914 (Rodentia, Muridae): A Multidisciplinary Approach, Mammalia, 1999, vol. 63, pp. 475–494.

    Google Scholar 

  4. Musser, G.G. and Carleton, M.D., Family Muridae, Mammal Species of the World—A Taxonomic and Geographic Reference, Wilson, D.E. and Reeder, D.A.M., Eds., Washington, DC: Smithsonian Inst. Press, 1993, pp. 501–756.

    Google Scholar 

  5. Fadda, C., Corti, M., and Verheyen, E., Molecular Phylogeny of Myomys/Stenocephalemys Complex and Its Relationships with Related African Genera, Biochem. Syst. Ecol., 2001, vol. 29, pp. 585–596.

    PubMed  CAS  Google Scholar 

  6. Lecompte, E., Granjon, L., Kerbis Peterhans, J., and Denys, C., Cytochrome b-Based Phylogeny of the Praomys Group (Rodentia, Muridae): A New African Radiation?, C. R. Biol., 2002, vol. 325, pp. 827–840.

    PubMed  CAS  Google Scholar 

  7. Bulatova, N.Sh. and Lavrenchenko, L.A., Possible Karyological Affinities of Small Mammals from North of the Ethiopian Plateau, African Biodiversity: Molecules, Organisms, Ecosystems, Huber, B.A., Sinclair, B.J., and Lampe, K.-H., Eds., New York: Springer, 2005, pp. 315–319.

    Google Scholar 

  8. Smith, T.B., Wayne, R.K., Girman, D., and Bruford, M., A Role for Ecotones in Generating Rainforest Biodiversity, Science, 1997, vol. 276, pp. 1855–1857.

    CAS  Google Scholar 

  9. Orr, M.R. and Smith, T.B., Ecology and Speciation, Trends Ecol. Evol., 1998, vol. 13, pp. 502–506.

    Article  Google Scholar 

  10. Moritz, C., Patton, J.L., Schneider, C.J., and Smith, T.B., Diversification of Rainforest Faunas: An Integrated Molecular Approach, Annu. Rev. Ecol. Syst., 2000, vol. 31, pp. 533–563.

    Article  Google Scholar 

  11. Rice, W.R. and Hostert, E.E., Laboratory Experiments on Speciation: What Have We Learned in 40 Years?, Evolution, 1993, vol. 47, pp. 1637–1653.

    Google Scholar 

  12. Doebeli, M. and Dieckmann, U., Speciation along Environmental Gradients, Nature, 2003, vol. 421, pp. 259–264.

    Article  PubMed  CAS  Google Scholar 

  13. Mizera, F. and Meszéna, G., Spatial Niche Packing, Character Displacement and Adaptive Speciation along an Environmental Gradient, Evol. Ecol. Res., 2003, vol. 5, pp. 1–20.

    Google Scholar 

  14. Smith, T.B., Calsbeek, R., Wayne, R.K., et al., Testing Alternative Mechanisms of Evolutionary Divergence in an African Rain Forest Passerine Bird, J. Evol. Biol., 2005, vol. 18, pp. 257–268.

    Article  PubMed  CAS  Google Scholar 

  15. Patton, J. and Smith, M.F., mtDNA Phylogeny of Andean Mice: A Test of Diversification across Ecological Gradients, Evolution, 1992, vol. 46, pp. 174–183.

    CAS  Google Scholar 

  16. Mathew, C.G., The Isolation of High-Molecular-Weight Eukaryotic DNA, Methods in Molecular Biology, Walker, J.M., Ed., New York: Humana, 1984, pp. 31–34.

    Google Scholar 

  17. Swofford, D.L., PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Sunderland, Mass.: Sinauer, 2000.

    Google Scholar 

  18. Posada, D. and Crandall, K.A., Modeltest: Testing the Model of DNA Substitution, Bioinformatics, 1998, vol. 14, pp. 817–818.

    Article  PubMed  CAS  Google Scholar 

  19. Felsenstein, J., Confidence Limits on Phylogenies: An Approach Using the Bootstrap, Evolution, 1985, vol. 39, pp. 783–791.

    Google Scholar 

  20. Tajima, F., Simple Methods for Testing Molecular Clock Hypothesis, Genetics, 1993, vol. 135, pp. 599–607.

    PubMed  CAS  Google Scholar 

  21. Kumar, S., Tamura, K., Jakobsen, B., and Nei, M., MEGA2: Molecular Evolutionary Genetics Analysis Software, Tempe: Arizona State Univ., 2001.

    Google Scholar 

  22. Felsenstein, J., Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach, J. Mol. Evol., 1981, vol. 17, pp. 368–376.

    Article  PubMed  CAS  Google Scholar 

  23. Jaeger, J.-J., Tong, H., and Denys, C., Age de la divergence Mus-Rattus: Comparaison des donnees paleontologique et moleculaires, C. R. Acad. Sci. Paris: Ser. II, 1986, vol. 302, pp. 917–922.

    Google Scholar 

  24. Jaarola, M., Martinkova, N., Gunduz, I., et al., Molecular Phylogency of the Speciose Vole Genus Microtus (Arvicolinae, Rodentia) Inferred from Mitochondrial DNA Sequences, Mol. Phyl. Evol., 2004, vol. 33, pp. 647–663.

    CAS  Google Scholar 

  25. Irwin, D.M., Kocher, T.D., and Wilson, A.C., Evolution of the Cytochrome b Gene of Mammals, J. Mol. Evol., 1991, vol. 32, pp. 128–144.

    PubMed  CAS  Google Scholar 

  26. Davidson, A. and Rex, D.C., Age of Volcanism and Rifting in south Western Ethiopia, Nature, 1980, vol. 283, pp. 657–658.

    Article  Google Scholar 

  27. Bonnefille, R., Evidence for a Cooler and Drier Climate in the Ethiopian Upland 2.5 Myr Ago, Nature, 1983, vol. 303, pp. 487–491.

    Article  Google Scholar 

  28. Martin, Y., Gerlach, G., Schlotterer, C., and Meyer, A., Molecular Phylogeny of European Muroid Rodents Based on Complete Cytochrome b Sequences, Mol. Phyl. Evol., 2000, vol. 16, pp. 37–47.

    CAS  Google Scholar 

  29. Patton, J.L., Myers, P., and Smith, M.F., Vicariant Versus Gradient Models of Diversification: The Small Mammal Fauna of Eastern Andean Slopes of Peru, Vertebrates in the Tropics, Peters, G. and Hutterer, R., Eds., Bonn: Koenig, 1990, pp. 355–371.

    Google Scholar 

  30. Smith, M.F., Kelt, D.A., and Patton, J.L., Testing Models of Diversification in Mice in the Abrothrix olivaceus/xanthorhinus Complex in Chile and Argentina, Mol. Ecol., 2001, vol. 10, pp. 397–405.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.A. Lavrenchenko, E. Verheyen, 2006, published in Genetika, 2006, Vol. 42, No. 4, pp. 549–557.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavrenchenko, L.A., Verheyen, E. Evolutionary relationships among narrow-headed rats (genus Stenocephalemys, muridae, rodentia) inferred from complete cytochrome b gene sequences. Russ J Genet 42, 439–446 (2006). https://doi.org/10.1134/S1022795406040119

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406040119

Keywords

Navigation