Skip to main content
Log in

Analysis of nucleotide diversity at the cytochrome b and cytochrome oxidase 1 genes at the population, species, and genus levels

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Algorithms of nucleotide diversity measures and other measures of genetic divergence at the molecular level are analyzed. Based on a database of p-distances, we have compared genetic divergence of populations (1) and taxa of different rank, such as sibling species (2), species within a genus (3), and species from different genera within a family (4). Based on the theory and algorithms of distance calculation from the primary DNA sequences, as well as the actual distances estimated from literature, it is recommended to use in analysis of experimental data a specific model selected from the eight available ones. The empirical data for more than 24 000 vertebrate and invertebrate species demonstrate that the data series are realistic and interpretable when p-distance or its various estimates are used. This testifies to the applicability of p-distance for most interspecies and intraspecies comparisons of genetic divergence up to the family level by two genes compared. Data on p-distances revealed various and increasing levels of genetic divergence of the sequences of genes Cyt-b and Co-1 in four groups compared. Mean unweighted scores of distances for the four groups were as follows: Cyt-b (1) 1.55 ± 0.56, (2) 5.52 ± 1.34, (3) 10.69 ± 1.34, (4) 18.51 ± 2.09 and Co-1 (1) 0.55 ± 0.19, (2) 4.91 ± 0.83, (3) 9.66 ± 0.72, (4) 14.69 ± 1.02. Differences in divergence between the genes themselves at the four levels were also found, although the total mean distances for the two genes did not show statistically significant differences. This conforms to the ample evidence showing different and nonuniform evolution rates of these and other genes and their various regions. The results of the analysis of the nucleotide and allozyme divergence within species and higher taxa of animals, first, are in a good agreement with these results, including data on protein gene markers, and, second, this evidence suggests that in animals, phyletic evolution is likely to prevail at the molecular level, and speciation mainly corresponds to the type D1 (geographic model). The prevalence of the D1 speciation mode does not mean that the other modes are absent. There are at least seven various modes of speciation. Recognition of speciation modes is a task that seems to require construction of a quantitative genetic model (theory) of speciation. Although, in view of a vast diversity of the possible causes of reproductive isolating barriers (RIBs) and speciation initiation, as well as the “empirical nature” of the formalized approach, proposed in the present work, some newly arising questions may be left without an answer. Their solution probably lied in increasing the number of descriptors and members of equations, proposed in this study, on the basis of DNA markers and other genomic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cracraft, J., Species Concepts and Speciation Analysis, Curr. Ornithol., 1983, vol. 1, pp. 159–187.

    Google Scholar 

  2. DeQuieros, K. and Donoghue, M.J., Phylogenetic Systematics and the Species Problem, Cladistics, 1988, vol. 4, pp. 317–338.

    Google Scholar 

  3. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Nauka, 1983.

    Google Scholar 

  4. Altukhov, Yu.P., Genetic Processes in Populations, Moscow: Nauka, 1989, 2nd ed.

    Google Scholar 

  5. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Nauka, 1999, 3rd ed.

    Google Scholar 

  6. Ayala, F.J., Vvedenie v populyatsionnuyu i evolyutsionnuyu genetiku (Introduction to Population and Evolutionary Genetics), Moscow: Mir, 1984.

    Google Scholar 

  7. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Google Scholar 

  8. Avise, J.C. and Wollenberg, K., Phylogenetics and Origin of Species, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 7748–7755.

    Article  PubMed  CAS  Google Scholar 

  9. Avise, J.C., Molecular Markers, Natural History and Evolution, New York: Chapman & Hall, 1994.

    Google Scholar 

  10. Hartl, D.L. and Clarke, A.G., Principles of Population Genetics, Sunderland, Mass.: Sinauer Ass., 1997.

    Google Scholar 

  11. Li, W.H., Molecular Evolution, Sunderland: Sinauer Ass., 1997.

    Google Scholar 

  12. Powell, J.R., Progress and Prospects in Evolutionary Biology: The Drosophila Model, New York: Oxford Univ. Press, 1997.

    Google Scholar 

  13. Johns, G.C. and Avise, J.C., A Comparative Summary of Genetic Distances in the Vertebrates from the Mitochondrial Cytochrome b Gene, Mol. Biol. Evol., 1998, vol. 15, no. 11, pp. 1481–1490.

    PubMed  CAS  Google Scholar 

  14. Graur, D. and Li, W.H., Fundamentals of Molecular Evolution, Sunderland: Sinauer Ass., 1999.

    Google Scholar 

  15. Hebert, P.D.N., Givinska, A., Ball, S.L., and de Waard, J.A., Biological Identification through DNA Barcodes, Proc. R. Soc. London, B, 2002, vol. 270, no. 1512, pp. 02PB0653.1–02PB0653.9.

    Google Scholar 

  16. Hebert, P.D.N. and Ratnasingham, S., Barcoding Animal Life: Cytochrome c Oxidase Subunit 1 Divergences among Closely Related Species, Proc. R. Soc. London, B, 2002, vol. 270, no. 1512, pp. 03BL0066.S1–03BL0066.S4.

    Google Scholar 

  17. Creer, S., Malhotra, A., and Thorpe, R.S., Assessing the Phylogenetic Utility of Four Mitochondrial Genes and a Nuclear Intron in the Asian Pit Viper Genus, Trimeresurus: Separate, Simultaneous, and Conditional Data Combination Analyses, Mol. Biol. Evol., 2003, vol. 20, no. 8, pp. 1240–1251.

    PubMed  CAS  Google Scholar 

  18. Avise, J.C. and Walker, D., Species Realities and Numbers in Sexual Vertebrates: Perspectives from an Asexually Transmitted Genome, Evolution, 1999, vol. 9, no. 3, pp. 992–995.

    Google Scholar 

  19. Lewontin, R.C., The Genetic Basis of Evolutionary Change, New York: Columbia Univ. Press, 1974.

    Google Scholar 

  20. Glazko, V.I., Isozyme Genetics of Farm Animals, Itogi Nauki Tekhn., 1988, vol. 10, pp. 1–212.

    Google Scholar 

  21. Thorpe, J.P., Enzyme Variation, Genetic Distance and Evolutionary Divergence in Relation to Levels of Taxonomic Variation, Protein Polymorphism: Adaptive and Taxonomic Significance, Oxford, J.S. and Rollinson, D., Eds., London: Academic, 1983, pp. 131–152.

    Google Scholar 

  22. Ward, R.D., Skibinski, D.O.F., and Woodwark, M., Protein Heterozygosity, Protein Structure, and Taxonomic Differentiation, Evolutionary Biology, Hecht, M.K., et al., Eds., New York: Plenum, 1992, pp. 73–159.

    Google Scholar 

  23. DeWoody, J.A. and Avise, J.C., Microsatellite Variation in Marine, Freshwater and Anadromous Fishes Compared with Other Animals, J. Fish. Biol., 2000, vol. 56, no. 3, pp. 461–473.

    Article  CAS  Google Scholar 

  24. Makarieva, A.M., Variance of Protein Heterozygosity in Different Species of Mammals with Respect to the Number of Loci Studied, Heredity, 2001, vol. 87, pp. 41–51.

    Article  PubMed  CAS  Google Scholar 

  25. Avise, J.C., Phylogepgraphy: The History and Formation of Species, Cambridge: Harvard Univ. Press, 2000.

    Google Scholar 

  26. Swofford, D.L., Olsen, G.J., Waddel, P.J., and Hillis, D.M., Phylogenetic Inference, Molecular Systematics, Hillis, D.M., Moritz, C., Mable, B., Eds., Sunderland, Mass.: Sinauer Ass., 1996, pp. 407–514.

    Google Scholar 

  27. Li, W.H. and Zarkhih, A., Statistical Tests of DNA Phylogenies, Syst. Biol., 1995, vol. 44, pp. 49–63.

    Google Scholar 

  28. DeQuieros, K., The General Lineage Concept of Species, Species Criteria, and the Process of Speciation: A Conceptual Unification and Terminological Recommendations, Endless Forms: Species and Speciation, Howard, D.J. and Berlocher, S.H., Eds., New York: Oxford Univ. Press, 1998, pp. 57–78.

    Google Scholar 

  29. Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, New York: Oxford Univ. Press, 2000.

    Google Scholar 

  30. Rzhetsky, A. and Nei, M., Test of Applicability of Several Substitution Models for DNA Sequence Data, Mol. Biol. Evol., 1995, vol. 12, pp. 131–151.

    PubMed  CAS  Google Scholar 

  31. Hall, B., Phylogenetic Trees Made Easy: A How-To Manual for Molecular Biologists, Sunderland: Sinauer Ass., 2001.

    Google Scholar 

  32. Sanderson, M.J. and Shaffer, H.B., Troubleshooting Molecular Phylogenetic Analyses, Annu. Rev. Ecol. Syst., 2002, vol. 33, pp. 49–72.

    Article  Google Scholar 

  33. Felsenstein, J., Inferring Phylogenies, Sunderland: Sinauer Ass., 2004.

    Google Scholar 

  34. STATISTICA, Statistica for Windows: Users Guide, Tulsa: StatSoft, 1994.

    Google Scholar 

  35. Williams, S.T., Knowlton, N., Weight, L.A., and Jara, J.A., Evidence for Three Major Clades within Snapping Shrimps Genus Alpheus Inferred from Nuclear and Mitochondrial Sequence Data, Mol. Phylogenet. Evol., 2001, vol. 20, no. 3, pp. 375–389.

    PubMed  CAS  Google Scholar 

  36. Kontula, T., Kirilchik, S.V., and Vainola, R., Endemic Diversification of the Monophyletic Cottoid Fish Species Flock in the Lake Baikal Explored with mtDNA Sequencing, Mol. Phylogenet. Evol., 2003, vol. 27, pp. 143–155.

    PubMed  CAS  Google Scholar 

  37. Martinez-Navarro, E.M., Galian, J., and Serrano, J., Phylogeny and Molecular Evolution of the Tribe Harpalini (Coleoptera, Carabidae) Inferred from Mitochondrial Cytochrome-Oxidase I, Mol. Phylogenet. Evol., 2005, vol. 35, pp. 127–146.

    PubMed  CAS  Google Scholar 

  38. Bertsch, A., Schweer, H., and Tanaka, H., Male Labial Gland Secretions and Mitochondrial DNA Markers Support Species Status of Bombus criptarum and B. magnus (Hymenoptera, Apidae), Insect. Soc., 2005, vol. 52, pp. 45–54.

    Article  Google Scholar 

  39. Wuster, W., Dumbrell, A.J., Hay, C., et al., Snakes across the Strait: Trans-Torresian Phylogeographic Relationships in Three Genera of Australasian Snakes (Serpentes: Elapidae: Acanthophis, Oxyuranus and Pseudechis), Mol. Phylogenet. Evol., 2005, vol. 34, no. 1, pp. 1–14.

    PubMed  Google Scholar 

  40. Posada, D. and Grandal, K.A., MODELTEST: Testing the Model DNA Substitution, Bioinformatics, 1998, vol. 14, pp. 817–818.

    Article  PubMed  CAS  Google Scholar 

  41. Swofford, D.L., PAUP*: Phylogenetic Analysis Using Parsimony and Other Methods (Software), Sunderland: Sinauer Ass., 2000.

    Google Scholar 

  42. Kumar, S., Tamura, K., and Nei, M., MEGA: Molecular Evolutionary Genetics Analysis (With a 130-Page Printed Manual), University Park: Pennsylvania Univ., 1993.

    Google Scholar 

  43. Kumar, S., Tamura, K., and Nei, M., MEGA3: Molecular Evolutionary Genetics Analysis, 2000, Web-base version (www.magasoftware.net).

  44. Schneider, S., Roessli, D., and Excoffier, L., Arlequine Ver. 2.000: A Software for Population Genetic Data Analysis, Geneva: Univ. of Geneva, 2000.

    Google Scholar 

  45. Baker, C.S., Perry, A., Chambers, G.K., and Smith, P.J., Population Variation in the Mitochondrial Cytochrome-b Gene of the Orange Roughy Hoplostethus atlanticus and the Hoki Macruronus novaezelandiae, Marine Biol., 1995, vol. 122, no. 4, pp. 503–509.

    Article  CAS  Google Scholar 

  46. Kochzius, M. and Blohm, D., Genetic Population Structure of the Lionfish Pterois miles (Scorpaenidae, Pteroinae) in the Gulf of Aqaba and Northern Red Sea, Gene, 2005, vol. 347, no. 2, pp. 295–301.

    Article  PubMed  CAS  Google Scholar 

  47. Bucklin, A. and Wiebe, P.H., Low Mitochondrial Diversity and Small Effective Population Sizes of the Copepods Calanus finmarchicus and Nannocalanus minor: Possible Impact of Climatic Variation during Recent Glaciation, J. Hered., 1998, vol. 89, no. 5, pp. 383–392.

    Article  PubMed  CAS  Google Scholar 

  48. Beckenbach, A.T., Thomas, W.K., and Sohrabi, H., Intraspecific Sequence Variation in the Mitochondrial Genome of Rainbow Trout, Genome, 1990, vol. 33, no. 1, pp. 13–15.

    PubMed  CAS  Google Scholar 

  49. Johnson, M.J., Wallace, D.C., Farris, C.D., et al., Radiation of Human Mitochondria DNA Types Analyzed by Restriction Endonuclease Cleavage Patterns, J. Mol. Evol., 1983, vol. 19, pp. 255–271.

    Article  PubMed  CAS  Google Scholar 

  50. Daniels, S.R., Stewart, B.A., and Cook, P.A., Congruent Pattern of Genetic Variation in a Burrowing Freshwater Crab Revealed by Allozymes and mtDNA Sequence Analysis, Hydrobiologya, 2002, vol. 468, pp. 171–179.

    CAS  Google Scholar 

  51. Schon, I., Rubin, R., Griffits, H., and Martins, K., Slow Molecular Evolution in Ancient Asexual Ostracod, Proc. R. Soc. London, B, 1998, vol. 265, pp. 235–242.

    Google Scholar 

  52. Johnson, K.P., Cruickshank, R.H., Adams, R.J., et al., Dramatically Elevated Rate of Mitochondrial Substitution in Lice (Insecta: Phthiraptera), Mol. Phylogenet. Evol., 2003, vol. 26, pp. 231–242.

    PubMed  CAS  Google Scholar 

  53. Klug, W.S. and Cummings, M.R., Essential Genetics, Prentice Hall, 2002.

  54. Zhimulev, I.F., Obshchaya i molekulyarnaya genetika (General and Molecular Genetics), Novosibirsk: Novosib. Univ., 2002.

    Google Scholar 

  55. Barns, M.R., Predictive Functional Analysis of Polymorphisms: An Overview, Bioinformatics for Geneticists, Barnes, M.R. and Gray, I.C., Eds., Chichester: Wiley, 2003, pp. 249–271.

    Google Scholar 

  56. Li, W.-H., Gojobory, T., and Nei, M., Pseudogenes As a Paradigm of Neutral Evolution, Nature, 1981, vol. 292, pp. 237–239.

    Article  PubMed  CAS  Google Scholar 

  57. Li, W.-H., Wu, C.-I., and Luo, C.-C., Nonrandomness of Pint Mutation As Reflected in Nucleotide Substitutions in Pseudogenes and Its Evolutionary Implications, J. Mol. Evol., 1984, vol. 21, pp. 58–71.

    Article  PubMed  CAS  Google Scholar 

  58. Gillespie, J.H., Lineage Effects and the Index of Dispersion Molecular Evolution, Mol. Biol. Evol., 1998, vol. 6, pp. 636–647.

    Google Scholar 

  59. Brown, C.J., Aquadro, C.F., and Anderson, W.W., DNA Sequence Evolution of the Amylase Multigene Family in Drosophila pseudoobscura, Genetics, 1990, vol. 126, pp. 131–138.

    PubMed  CAS  Google Scholar 

  60. Wu, W., Schmidt, T.R., Goodman, M., and Grossman, L., Molecular Evolution of Cytochrome c Oxidase Subunit 1 in Primates: Is There Coevolution between Mitochondrial and Nuclear Genomes?, Mol. Phylogenet. Evol., 2000, vol. 17, no. 2, pp. 294–304.

    PubMed  CAS  Google Scholar 

  61. Malecote, G., Isolation by Distance, Genetic Structure of Populations, Morton, N.E., Ed., Honolulu: Univ. of Hawaii, 1973, pp. 72–75.

    Google Scholar 

  62. Nei, M., Human Evolution at Molecular Level, Population Genetics and Molecular Evolution, Ohta, T. and Aoki, K., Eds., Tokyo: Japan Sci. Soc., 1985, pp. 41–64.

    Google Scholar 

  63. Cann, R.L., Brown, W.M., and Wilson, A.C., Evolution of Human Mitochondrial DNA: A Preliminary Report, Human Genetics. Part A.: The Unfolding Genome, Bonne-Tamir, B., Ed., New York: Liss, 1982, pp. 157–165.

    Google Scholar 

  64. Cann, R.L., The Evolution of Human Mitochondrial DNA, Ph.D. Thesis, Berkeley: Univ. of California, 1982.

    Google Scholar 

  65. Dowling, T.E. and Brown, W.M., Population Structure of the Bottle-Nosed Dolphin (Tursiops truncatus) As Determined by Restriction Endonuclease Analysis of Mitochondrial DNA, Marine Mamm. Sci., 1993, vol. 9, no. 2, pp. 138–155.

    Google Scholar 

  66. Van Wagner, C.E. and Baker, A.J., Association between Mitochondrial DNA and Morphological Evolution in Canada Geese, J. Mol. Evol., 1990, vol. 31, no. 5, pp. 373–382.

    Article  Google Scholar 

  67. Gonzalez-Willasenor, L.I. and Powers, D.A., Mitochondrial DNA Restriction Site Polymorphisms in the Teleost Fundulus heteroclitus Support Secondary Intergradation, Evolution, 1990, vol. 44, no. 1, pp. 27–37.

    Google Scholar 

  68. Billington, N. and Strange, R.M., Mitochondrial DNA Analysis Confirms the Existence of a Genetically Divergent Walleye Population in Northeastern Mississippi, Trans. Am. Fish. Soc., 1995, vol. 124, no. 5, pp. 770–776.

    Article  CAS  Google Scholar 

  69. Stepien, C.A. and Faber, J.E., Population Genetic Structure Phylogeography and Spawning Phylopatry in Walleye (Stizostedion vitreum) from Mitochondrial DNA Control Region Sequences, Mol. Ecol., 1998, vol. 7, pp. 1757–1769.

    Article  PubMed  CAS  Google Scholar 

  70. Takahata, N. and Slatkin, M., Mitochondrial Gene Flow, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 1764–1767.

    PubMed  CAS  Google Scholar 

  71. Gerber, A.S., Tibbets, C.A., and Dowling, T.E., The Role of Introgressive Hybridization in the Evolution of the Gila robusta Complex (Teleostei: Cyprinidae), Evolution, 2001, vol. 55, no. 10, pp. 2028–2039.

    PubMed  CAS  Google Scholar 

  72. Powell, J.R., Interspecific Cytoplasmic Gene Flow in the Absence of Nuclear Gene Flow: Evidence from Drosophila, Proc. Natl. Acad. Sci. USA, 1983, vol. 80, pp. 492–495.

    PubMed  CAS  Google Scholar 

  73. Ferris, S.D., Sage, R.D., Huang, C.-M., et al., Flow of Mitochondrial DNA across a Species Boundary, Proc. Natl. Acad. Sci. USA, 1983, vol. 80, pp. 2290–2294.

    PubMed  CAS  Google Scholar 

  74. Spolsky, C. and Uzzell, T., Natural Interspecies Transfer of Mitochondrial DNA in Amphibians, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 5802–5805.

    PubMed  CAS  Google Scholar 

  75. Yonekawa, H., Moriwaki, K., Gotoh, O., et al., Evolutionary Relationships among Five Subspecies of Mus musculus Based on Restriction Enzyme Cleavage Patterns of Mitochondrial DNA, Genetics, 1981, vol. 98, pp. 801–816.

    PubMed  CAS  Google Scholar 

  76. Yonekawa, H., Tsuda, K., Tsuchia, K., et al., Genetic Diversity, Geographic Distribution and Evolutionary Relationships of Mus musculus Subspecies Based on Polymorphism of Mitochondrial DNA, Problems of Evolution, Kryukov, A.P. and Yakimenko, L.V., Eds., Vladivostok: Dalnauka, 2000, pp. 90–108.

    Google Scholar 

  77. Campton, D.E., Natural Hybridization and Introgression in Fishes: Method of Detection and Genetic Interpretation, Population Genetics and Fishery Management, Ryman, N. and Utter, F., Eds., 1987, pp. 161–192.

  78. Clark, A.G., Natural Selection with Nuclear and Cytoplasmic Transmission: I. A Deterministic Model, Genetics, 1984, vol. 107, pp. 679–701.

    PubMed  CAS  Google Scholar 

  79. Asmussen, M.A., Arnold, J., and Avise, J.C., Definition and Properties of Disequilibrium Statistics for Associations between Nuclear and Cytoplasmic Genotypes, Genetics, 1987, vol. 115, pp. 755–768.

    PubMed  CAS  Google Scholar 

  80. Avise, J.C., Cytonuclear Genetic Signatures of Hybridization Phenomena: Rationale Utility and Empirical Examples from Fishes and Other Aquatic Animals, Rev. Fish Biol. Fisheries, 2001, vol. 10, pp. 253–263.

    Google Scholar 

  81. Avise, J.C. and Saunders, N.C., Hybridization and Introgression among Species of Sunfish (Lepomis): Analysis by Mitochondrial DNA and Allozyme Markers, Genetics, 1984, vol. 108, pp. 237–250.

    PubMed  CAS  Google Scholar 

  82. Avise, J.C., Shapira, J.F., Daniel, S.W., et al., Mitochondrial DNA Differentiation during the Speciation Process in Peromyscus, Mol. Biol. Evol., 1983, vol. 1, pp. 38–56.

    PubMed  CAS  Google Scholar 

  83. Avise, J.C., Bermingham, E., Kessler, L.G., and Saunders, N.C., Characterization of Mitochondrial DNA Variability in a Hybrid Swam between Subspecies Bluegill Sunfish (Lepomis macrochirus), Evolution, 1984, vol. 38, pp. 931–941.

    CAS  Google Scholar 

  84. Glemet, H., Blier, P., and Bernatchez, L., Geographical Extent of Arctic Char (Salvelinus alpinus) mtDNA Introgression in Brook Char Populations (S. fontinalis) from Eastern Quebec Canada, Mol. Ecol., 1998, vol. 7, no. 12, pp. 1655–1662.

    Article  Google Scholar 

  85. Heath, D.A., Rawson, P.D., and Hilbish, T.J., PCR-Based Nuclear Markers Identify Alien Blue Mussel (Mytilus spp.) Genotypes on the West Coast of Canada, Can. J. Fish. Aquat. Sci., 1995, vol. 52, pp. 2621–2627.

    CAS  Google Scholar 

  86. Rawson, P.D., Argawal, V., and Hilbish, T.J., Hybridization between the Blue Mussels Mytilus galloprovincialis and M. trossulus Along the Pacific Coast of North America: Evidence for Limited Introgression, Marine Biol., 1999, vol. 134, no. 1, pp. 201–211.

    Article  Google Scholar 

  87. Skurikhina, L.A., Kartavtsev, Yu.F., Chichvarkhin, A.Yu., and Pan’kova, M.V., Study of Two Species of Mussels, Mytilus trossulus and Mytilus galloprovincialis (Bivalvia, Mutilidae) and Their Hybrids in Peter the Great Bay of the Sea of Japan with the Use of PCR Markers, Rus. J. Genet., 2001, vol. 37, no. 12, pp. 1448–1451.

    Article  CAS  Google Scholar 

  88. Kartavtsev, Yu.F., Molekulyarnaya evolyutsiya i populyatsionnaya genetika (Molecular Evolution and Population Genetics), Vladivostok: Dal’nevost. Gos. Univ., 2005.

    Google Scholar 

  89. Kartavtsev, Y.Ph., Chichvarkhin, A.Y., Kijima, A., et al., Allozyme and Morphometric Analysis of Two Common Mussel Species of Mytilus Genus (Mollusca, Mytilidae) in Korea, Japan and Russia Waters, submitted for publication in Korean J. Genet., 2005, vol. 27, no. 4, pp. 289–306.

    CAS  Google Scholar 

  90. Skibinski, D.O.F., Beardmore, J.A., and Cross, T.F., Aspects of the Population Genetics of Mytilus (Mytilidae: Mollusca) in the British Isles, Biol. J. Linn. Soc., 1983, vol. 19, pp. 173–183.

    Google Scholar 

  91. Gardner, J.P.H. and Skibinski, D.O.F., Historical and Size-Dependent Genetic Variation in Hybrid Mussel Populations, Heredity, 1988, vol. 61, pp. 93–105.

    Google Scholar 

  92. Wilhelm, R., Genotype-Specific Selection within a Hybrid Population of the Mussel Genus Mytilus, Master Thesis, Columbia: Univ. of South Carolina, 1993.

    Google Scholar 

  93. Rawson, P.D., Secor, C.L., and Hilbish, T.J., The Effect of Natural Hybridization on the Regulation of Doubly Uniparental mtDNA Inheritance in Blue Mussels (Mytilus spp.), Genetics, 1996, vol. 144, pp. 241–248.

    PubMed  CAS  Google Scholar 

  94. Rawson, P.D. and Hilbish, T.J., Asymmetric Introgression of Mitochondrial DNA among European Populations of Blue Mussels (Mytilus spp.), Evolution, 1998, vol. 52, no. 1, pp. 100–108.

    Google Scholar 

  95. Beaumont, A.R., Turner, G., Wood, A.R., and Skibinsky, D.O.F., Laboratory Hybridizations between Mytilus Species and Performance of Pure Species and Hybrid Veliger Larvae at Lowered Salinity, J. Molluscan Studies, 2005, vol. 71, no. 3, pp. 303–306.

    Google Scholar 

  96. Machordom, A. and Macpherson, E., Rapid Radiation and Cryptic Speciation in Squat Lobsters of the Genus Munida (Crustacea, Decapoda) and Related Genera in the South West Pacific: Molecular and Morphological Evidence, Mol. Phylogenet. Evol., 2004, vol. 33, no. 2, pp. 259–279.

    PubMed  CAS  Google Scholar 

  97. Garcia-Machado, E., Chevalier Monteagudo, P.P., and Solignac, M., Lack of mtDNA Differentiation among Hamlets (Hypoplectrus, Serranidae), Marine Biol., 2004, vol. 144, pp. 147–152.

    CAS  Google Scholar 

  98. Timofeeff-Resovsky, N.V., Vorontsov, N.N., and Yablokov, A.V., Kratkii ocherk teorii evolyutsii (Brief Essay of the Evolution Theory), Moscow: Nauka, 1977.

    Google Scholar 

  99. Mayr, E., Process of Speciation in Animals, Mechanisms of Speciation, Barigozzi, C., Ed., New York: Liss, 1982, pp. 1–20.

    Google Scholar 

  100. Mayr, E., Animal Species and Evolution, Cambridge: Harvard Univ. Press, 1963.

    Google Scholar 

  101. Templeton, A.R., Species and Speciation: Geography, Population Structure, Ecology and Gene Trees, Endless Forms: Species and Speciation, Howard, D.J. and Berlocher, S.H., Eds., New York: Oxford Univ. Press, 1998, pp. 32–43.

    Google Scholar 

  102. Krasilov, V.A., Evolyutsiya i biostratigrafiya (Evolution and Biostratigraphy), Moscow: Nauka, 1977.

    Google Scholar 

  103. King, M., Species Evolution: The Role of Chromosome Change, Cambridge: Cambridge Univ. Press, 1993.

    Google Scholar 

  104. Altukhov, Yu.P., Species and Speciation, Soros. Obrazovat. Zh., 1997, no. 4, pp. 2–10.

  105. Howard, D.J., Unanswered Questions and Future Directions in the Study of Speciation, Endless Forms: Species and Speciation, Howard, D.J. and Berlocher, S.H., Eds., New York: Oxford Univ. Press, 1998, pp. 439–448.

    Google Scholar 

  106. Altukhov, Yu.P., Populyatsionnaya genetika ryb (Fish Population Genetics), Moscow: Pishchevaya Promyshlennost’, 1974.

    Google Scholar 

  107. Paterson, H.E.H., More Evidence Against Speciation by Reinforcement, J. South African Sci., 1978, vol. 74, pp. 369–371.

    Google Scholar 

  108. Paterson, H.E.H., The Recognition Concept of Species, Species and Speciation, Vrba, E.S., Ed., Pretoria: Transvaal Museum Monograph, 1985, pp. 21–29.

    Google Scholar 

  109. Simpson, G.G., Principles of Animal Taxonomy: The Species and Lower Categories, New York: Columbia Univ. Press, 1961.

    Google Scholar 

  110. Wiley, E.O., The Evolutionary Species Concept Reconsidered, Syst. Zool., 1978, vol. 27, pp. 17–26.

    Google Scholar 

  111. Van Valen, L., Ecological Species, Multispecies and Oaks, Taxon, 1976, vol. 25, pp. 233–239.

    Article  Google Scholar 

  112. Cracraft, J., Species Concepts and Speciation Analysis, Curr. Ornithol., 1983, vol. 1, pp. 159–187.

    Google Scholar 

  113. Endless Forms: Species and Speciation, Howard, D.J. and Berlocher, S.H., Eds., New York: Oxford Univ. Press, 1998.

    Google Scholar 

  114. Lewontin, R.C., The Genetic Basis of Evolutionary Change, New York: Columbia Univ., 1974.

    Google Scholar 

  115. Nei, M., Molecular Population Genetics and Evolution, Amsterdam: North Holland, 1975.

    Google Scholar 

  116. Zhivotovsky, L.A., Statistical Methods of Analyzing Gene Frequencies in Natural Populations, Itogi Nauki Tekhn.: Obshch. Genet., 1983, vol. 8, pp. 76–104.

    Google Scholar 

  117. Pasekov, V.P., Genetic Distances, Geneticheskie rasstoyaniya, Itogi Nauki Tekhn.: Obshch. Genet., 1983, vol. 8, pp. 4–75.

    Google Scholar 

  118. Nei, M., Genetic Distances between Populations, Am. Nat., 1972, vol. 106, no. 949, pp. 283–292.

    Article  Google Scholar 

  119. Nevo, E., Beiles, A., and Ben-Shlomo, R., The Evolutionary Significance of Genetic Diversity: Ecological, Demographic and Life History Correlates, Evolutionary Dynamics of Genetic Diversity, Mani, G.S., Ed., Lect. Notes Biomath., 1984, vol. 53, pp. 4–213.

  120. Aronshtam, A.A., Borkin, L.Ya., and Pudovkin, A.I., Isozymes in Population and Evolutionary Genetics, in Genetika izofermentov (Genetics of Isozymes), Moscow: Nauka, 1977, pp. 199–249.

    Google Scholar 

  121. Hedgecock, D., Population Genetic Bases for Improving Cultured Crustaceans, FIFAC/FAO Symp. on Selection, Hybridization and Genetic Engineering in Aquaculture of Fish and Shellfish for Consumption and Restocking, Bordeaux, 1986.

  122. Hedgecock, D. and Nelson, C., Genetic Variation of Enzymes and Adaptive Strategies in Crustaceans, in Genetika i razmnozhenie morskikh zhivotnykh (Genetics and Reproduction of Marine Animals), Vladivostok: Dal’nevost. Nauchn. Tsentr Akad. Nauk SSSR, 1981, pp. 105–129.

    Google Scholar 

  123. Evolution of Genes and Proteins, Nei, M. and Koehn, R.K., Eds., Sunderland: Sinauer Ass., 1983.

    Google Scholar 

  124. Ayala, F.J., Mekhanizmy evolyutsii, evolyutsiya (Evolution Mechanisms and Evolution), Moscow: Mir, 1981, pp. 33–65.

    Google Scholar 

  125. Avise, J.C. and Aquadro, C.F., A Comparative Summary of Genetic Distances in the Vertebrates: Pattern and Correlations, Evol. Biol., 1982, vol. 15, pp. 151–185.

    Google Scholar 

  126. Takehana, Y., Nagai, N., Matsuda, M., et al., Geographic Variation and Diversity of the Cytochrome b Gene in Japanese Wild Populations of Medaka, Oryzias latipes, Zool. Sci., 2003, vol. 20, no. 10, pp. 1279–1291.

    CAS  Google Scholar 

  127. Koehn, R.K., Physiology and Biochemistry of an Enzyme Variation: The Interface of Ecoloty and Population Genetics, Ecological Genetics: The Interface, Brussard, P., Ed., New York: Springer-Verlag, 1978, pp. 51–72.

    Google Scholar 

  128. Zouros, E., Singh, S.M., and Miles, H.E., Growth Rate in Oysters: An Overdominant Phenotype and Its Possible Explanations, Evolution, 1980, vol. 34, no. 5, pp. 856–867.

    Google Scholar 

  129. Koehn, R.K., Zera, A.J., and Hall, J.G., Enzyme Polymorphism and Natural Selection, Evolution of Genes and Proteins, Nei, M. and Koehn, R.K., Eds., Sunderland: Sinauer Ass., 1983, pp. 115–136.

    Google Scholar 

  130. Koehn, R.K., Diehl, W.J., and Scott, T.M., The Differential Contribution by Individual Enzymes of Glycolysis and Protein Catabolism to the Relationship between Heterozygosity and Growth Rate in the Coot Clam Mulinia lateralis, Genetics, 1988, vol. 118, pp. 121–130.

    CAS  Google Scholar 

  131. Zouros, E., On the Relation between Heterozygosity and Heterosis: An Evaluation of the Evidence from Marine Mollusks Isozymes, Curr. Topics Biol. Med. Res., 1987, vol. 15, pp. 255–270.

    CAS  Google Scholar 

  132. Zouros, E. and Folts, D.W., The Use of Allelic Isozyme Variation for the Study of Heterosis: Isozymes, Curr. Topics Biol. Med. Res., 1987, vol. 13, pp. 1–59.

    CAS  Google Scholar 

  133. Powers, D.A., A Multidisciplinary Approach to the Study of Genetic Variation in Species, New Directions in Physiological Ecology, Feder, M.L. and Bennet, A.F., Eds., New York: Cambridge Univ. Press, 1987, pp. 102–134.

    Google Scholar 

  134. Kartavtsev, Y.P., Allozyme Heterozygosity and Morphological Homeostasis in Pink Salmon Fry Oncorhynchus gorbuscha (Pisces: Salmonidae): Evidences from the Family Analysis, J. Fish. Biol., 1992, vol. 40, no. 1, pp. 17–24.

    Article  CAS  Google Scholar 

  135. Kartavtsev, Y.P. and Svinyna, O.V., Allozyme Markers and Morphometric Variability in Gastropod Mollusk Nucella heyseana (Mollusca, Gastropoda) and Their Association with Environmental Change, Korean J. Genet., 2003, vol. 25, no. 4, pp. 1–12.

    Google Scholar 

  136. Ayala, F.J., Scientific Hypotheses, Natural Selection and Neutrality Theory of Protein Evolution, The Role of Natural Selection in Human Evolution, Salzano, F.M., Ed., North-Holland, 1975, pp. 19–42.

  137. King, J.L. and Jukes, T.H., Non-Darwinian Evolution, Science, 1969, vol. 164, pp. 788–798.

    PubMed  CAS  Google Scholar 

  138. Kimura, M., The Number of Heterozygous Nucleotide Sites Maintained in a Finite Population Due to Steady Flux of Mutations, Genetics, 1969, vol. 61, pp. 893–903.

    PubMed  CAS  Google Scholar 

  139. Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ., 1983.

    Google Scholar 

  140. Ohta, T. and Gillespie, J.H., Development of Neutral and Nearly Neutral Theories, Theor. Popul. Biol., 1996, vol. 49, no. 2, pp. 128–142.

    PubMed  Google Scholar 

  141. Rand, D.M. and Kann, L.M., Mutation and Selection at Silent and Replacement Sites in the Evolution of Animal Mitochondrial DNA, Genetics, 1998, vols. 102–103, pp. 393–407.

    Google Scholar 

  142. Willett, C.S. and Burton, R.S., Evolution of Interacting Proteins in the Mitochondrial Electron Transport System in a Marine Copepod, Mol. Biol. Evol., 2004, vol. 21, no. 3, pp. 443–453.

    PubMed  CAS  Google Scholar 

  143. Mukai, T., Tachida, H., and Ichinose, M., Selection for Viability at Loci Controlling Protein Polymorphism in Drosophila melanogaster Is Very Weak at Most, Proc. Natl. Acad. Sci. USA, 1980, vol. 77, pp. 4857–4860.

    PubMed  CAS  Google Scholar 

  144. Gillespie, J.H., Is the Population Size of a Species Relevant to Its Evolution?, Evolution, 2001, vol. 55, no. 11, pp. 2161–2169.

    PubMed  CAS  Google Scholar 

  145. Plotkin, J.B., Dushoff, J., and Fraser, H.B., Detecting Selection Using a Single Genome Sequence of M. tuberculosis and P. falciparum, Nature, 2004, vol. 428, no. 6986, pp. 942–945.

    Article  PubMed  CAS  Google Scholar 

  146. Hahn, M.W., Mesey, J.G., Begun, D.J., et al., Evolutionary Genomics: Codon Bias and Selection on Single Genomes, Nature, 2005, vol. 433, brief communication, p. E5 (10.1038/nature03221).

    Article  PubMed  CAS  Google Scholar 

  147. Nielsen, R. and Hubisz, M.J., Detecting Selection Needs Comparative Data, Nature, 2005, vol. 433, brief communication, p. E6 (10.1038/nature03221).

    Article  PubMed  CAS  Google Scholar 

  148. Ayala, F.J. and Fitch, W.M., Genetics and the Origin of Species: An Introduction, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 7691–7697.

    PubMed  CAS  Google Scholar 

  149. Templeton, A.R., Mechanisms of Speciation—Population Genetic Approach, Annu. Rev. Ecol. Syst., 1981, vol. 12, pp. 23–48.

    Article  Google Scholar 

  150. Kartavtsev, Y., Genetic Aspects of Speciation, Species Differentiation and Biodiversity, Proc. Int. Meet. of Biodiversity in Asia 2000, September 2000, Tokyo, p. 27.

  151. Kartavtsev, Yu.F., Sviridov, V.V., Hanzava, N., and Sasaki, T., Genetic Divergence of Far-Eastern Dace Species Belonging to the Genus Tribolodon (Pisces, Cyprinidae) and Closely Related Taxa, Rus. J. Genet., 2002, vol. 38, no. 11, pp. 1285–1297.

    Article  CAS  Google Scholar 

  152. Ryman, N.F., Allendorf, F.W., and Stahl, G., Reproductive Isolation with Little Genetic Divergence in Sympatric Populations of Brown Trout (Salmo trutta), Genetics, 1979, vol. 92, pp. 247–262.

    PubMed  CAS  Google Scholar 

  153. Rutaisire, J., Boot, A.J., Masemba, C., et al., Evolution of Labeo victorianus Predates the Pleistocene Desiccation of Lake Victoria: Evidence from Mitochondrial DNA Sequence Variation, South African J. Sci., 2004, vol. 100, nos. 11–12, pp. 607–608.

    CAS  Google Scholar 

  154. Duftner, N., Koblmuller, S., and Sturmbauer, C., Evolutionary Relationships of the Limnochromini, a Tribe of Benthic Deepwater Cichlid Fish Endemic to Lake Tanganyika, East Africa, J. Mol. Evol., 2005, vol. 60, no. 3, pp. 277–289.

    Article  PubMed  CAS  Google Scholar 

  155. Wilson, A.C., Gene Regulation in Evolution, Molecular Evolution, Ayala, F.J., Ed., Sunderland: Sinauer Ass., 1976, pp. 225–234.

    Google Scholar 

  156. Kartavtsev, Yu.F., Glubokovskii, M.K., and Chereshnev, I.A., Genetic Variation and Differentiation of Sympatric Char Species (Salvelinus, Salmonidae) from Chukotka, Genetika (Moscow), 1983, vol. 19, no. 4, pp. 584–593.

    Google Scholar 

  157. Kartavtsev, Yu.F. and Mamontov, A.M., Electrophoretic Estimation of Protein Variation and Similarity in Omul, Two Forms of Lake Herring (Soregonidae), and Grayling (Thumallidae) from the Lake Baikal, Genetika (Moscow), 1983, vol. 19, no. 11, pp. 1895–1902.

    CAS  Google Scholar 

  158. Ferris, S.D. and Whitt, G.S., Phylogeny of Tetraploid Catostomid Fishes Based on the Loss Duplicate Gene Expression, Syst. Zool., 1978, vol. 27, pp. 189–206.

    Google Scholar 

  159. Ferris, S.D. and Whitt, G.S., Evolution of the Differential Regulation of Duplicate Genes after Polyploidization, J. Mol. Evol., 1979, vol. 12, no. 3, pp. 267–317.

    PubMed  CAS  Google Scholar 

  160. Laurie-Ahlberg, C.C., Maroni, G., Buley, G.C., et al., Qauntative Genetic Variation of Enzyme Activities in Natural Populations of Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 1982, vol. 77, pp. 1073–1077.

    Google Scholar 

  161. Ferguson, J.W.H., On the Use of Genetic Divergence for Identifying Species, Biol. J. Linn. Soc., 2002, vol. 75, no. 4, pp. 509–516.

    Article  Google Scholar 

  162. Sites, J.W. and Marshall, J.C., Operational Criteria for Delimiting Species, Annu. Rev. Ecol. Evol. Syst., 2004, vol. 35, pp. 199–227.

    Article  Google Scholar 

  163. Suzuki, H., Yasuda, S.P., Sakaizumi, M., et al., Differential Geographic Patterns of Mitochondrial DNA Variation in Two Sympatric Species of Japanese Wood Mice Apodemus speciosus and A. argenteus, Genes Gene Syst., 2004, vol. 79, pp. 165–176.

    CAS  Google Scholar 

  164. Stone, K.D. and Cook, J.A., Molecular Evolution of Holarctic Martens (Genus Martes, Mammalia: Carnivora: Mustellidae), Mol. Evol. Phylogenet., 2002, vol. 24, pp. 169–176.

    CAS  Google Scholar 

  165. Mazurok, N.A., Rubtsova, N., Isaenko, A.A., et al., Comparative Chromosome and Mitochondrial DNA Analysis and Phylogenetic Relationships in Common Voles (Microtus arvicoliodae), Chromosome Res., 2001, vol. 9, pp. 107–120.

    Article  PubMed  CAS  Google Scholar 

  166. Sumida, M. and Ogata, M., Intraspecific Differentiation in the Japanese Brown Frog Rana japonica Inferred from Mitochondrial DNA Sequences of the Cytochrome b Gene, Zool. Sci., 1998, vol. 15, no. 6, pp. 989–1000.

    Article  CAS  Google Scholar 

  167. Kramer, B., van der Bank, H., Flint, N., et al., Evidence for Parapatric Speciation in the Mormyrid Fish, Pollimyrus castelnaui (Boulenger, 1911), from the Okavango-Upper Zambezi River Systems: P. marianne sp. nov., Defined by Electric Organ Discharges, Morphology and Genetics, Environ. Biol. Fishes, 2003, vol. 67, no. 1, pp. 47–70.

    Article  Google Scholar 

  168. Rambau, R.V., Robinson, T.J., and Stanyon, R., Molecular Genetics of Rhabdomys pumilio Subspecies Boundaries: mtDNA Phylogeography and Karyotypic Analysis by Fluorescence In Situ Hybridization, Mol. Phylogenet. Evol., 2003, vol. 28, no. 3, pp. 564–575.

    PubMed  CAS  Google Scholar 

  169. Zheng, X., Arbogast, B.S., and Kenagy, G.J., Historical Demography and Genetic Structure of Sister Species: Deermice (Peromiscus) in the North American Temperate Rain Forest, Mol. Ecol., 2003, vol. 12, pp. 711–724.

    Article  PubMed  Google Scholar 

  170. Volker, G., Molecular Evolutionary Relationships in Avian Genus Anthus (Pipits: Mothacillidae), Mol. Phylogenet. Evol., 1999, vol. 11, no. 1, pp. 84–94.

    Google Scholar 

  171. Piaggio, A.J. and Spicer, G.S., Molecular Phylogeny of the Chipmunk Inferred from Mitochondrial Cytochrome b and Cytochrome Oxidase II Gene Sequences, Mol. Phylogenet. Evol., 2001, vol. 20, no. 3, pp. 335–350.

    PubMed  CAS  Google Scholar 

  172. Serizawa, K., Suzuki, H., and Tsuchia, K., Phylogenetic View on Species Radiation in Apodemus Inferred from Variation of Nuclear and Mitochondrial Genes, Biochem. Genet., 2000, vol. 38, nos. 1–2, pp. 27–40.

    PubMed  CAS  Google Scholar 

  173. Kimbal, R.T., Braun, E.L., Zwartjez, P.W., et al., A Molecular Phylogeny of Pheasants and Partridges Suggests that These Lineages Are Not Monophyletic, Mol. Phylogenet. Evol., 1999, vol. 11, no. 1, pp. 38–54.

    Google Scholar 

  174. Jerome, M., Lemaire, C., and Bautista, J.M., Molecular Phylogeny and Species Identification of Sardines, J. Agric. Food Chem., 2003, vol. 51, pp. 43–50.

    PubMed  CAS  Google Scholar 

  175. Moller, P.R. and Gravlund, P., Phylogeny of the Eelpout Genus Lycodes (Pisces, Zoarcidae) As Inferred from Mitochondrial Cytochrome b and 12S rDNA, Mol. Phylogenet. Evol., 2003, vol. 26, pp. 369–388.

    PubMed  CAS  Google Scholar 

  176. Rocha-Olivares, A., Rosenblatt, R.H., and Vetter, R.D., Molecular Evolution, Systematics and Zoogeography of the Rockfish Subgenus sebastomus (Sebastes, Scorpenidae) Based on Mitochondrial Cytochrome b and Control Region Sequences, Mol. Phylogenet. Evol., 1999, vol. 11, no. 3, pp. 441–458.

    PubMed  CAS  Google Scholar 

  177. Rocha-Olivares, A., Kimbell, C.A., Eitner, B.J., and Vetter, R.D., Evolution of Mitochondrial Cytochrome b Gene Sequence in the Species-Rich Genus Sebastes (Teleostei, Scorpenidae) and Its Utility in Testing Monophyly in the Subgenus sebastomus, Mol. Phylogenet. Evol., 1999, vol. 11, no. 3, pp. 426–440.

    PubMed  CAS  Google Scholar 

  178. Sumida, M., Ogata, M., and Nishioka, M., Molecular Phylogenetic Relationships of Pond Frogs Distributed in Palearctic Region Inferred from DNA Sequences of Mitochondrial 12S Ribosomal RNA and Cytochrome b Genes, Mol. Phylogenet. Evol., 2000, vol. 16, no. 2, pp. 278–285.

    PubMed  CAS  Google Scholar 

  179. Griffiths, C.S., Correlation of Functional Domains and Rates of Nucleotide Substitutions at Cytochrome b, Mol. Phylogenet. Evol., 1997, vol. 7, no. 3, pp. 352–365.

    PubMed  CAS  Google Scholar 

  180. Kontula, T., Kirilchik, S.V., and Vainola, R., Endemic Diversification of the Monophyletic Cottoid Fish Species Flock in the Lake Baikal Explored with mtDNA Sequencing, Mol. Phylogenet. Evol., 2003, vol. 27, pp. 143–155.

    PubMed  CAS  Google Scholar 

  181. Bertsch, A., Schweer, H., Titze, A., and Tanaka, H., Male Labial Gland Secretions and Mitochondrial DNA Markers Support Species Status of Bombus cryptarum and B. magnus (Hymenoptera, Apidae), Insect. Soc., 2005, vol. 52, no. 1, pp. 45–54.

    Article  Google Scholar 

  182. Yamazaki, Y., Goto, A., and Nishida, M., Mitochondrial DNA Sequence Divergence between Two Cryptic Species of Lethenteron, with Reference to an Improved Identification Technique, J. Fish. Biol., 2003, vol. 62, no. 3, pp. 591–609.

    Article  CAS  Google Scholar 

  183. Garb, J.E., Gonzales, A., and Gillespie, A.G., The Black Widow Spider Genus Latrodectus (Araneae: Teridiidae): Phylogeny Biogeography and Invasion History, Mol. Phylogenet. Evol., 2004, vol. 31, pp. 1127–1142.

    PubMed  Google Scholar 

  184. Tarjuelo, I., Posada, D., Crandall, K., et al., Cryptic Species of Clavelina (Ascidiacea) in Two Different Habitats: Harbours and Rocky Littoral Zones in the Northwestern Mediterranean, Marine Biol., 2001, vol. 139, pp. 455–462.

    Google Scholar 

  185. Terriault, T.W., Docker, M.F., Orlova, M.I., et al., Molecular Resolution of the Family Dreissenidae (Mollusca: Bivalvia) with Emphasis on Ponto-Kaspian Species, Including First Report of Mytilopsis leucophaeata in the Black Sea Basin, Mol. Phylogenet. Evol., 2004, vol. 30, pp. 479–489.

    Google Scholar 

  186. Hwang, J.S., Lee, J.S., Goo, T.W., et al., The Comparative Molecular Study between Bombycidae and Saturniidae Based on mtDNA RFLP and Cytochrome Oxidase 1 Gene Sequences: Implication for Molecular Evolution, Z. Naturforschung (J. Biosci.), 1999, vol. 54, nos. 7–8, pp. 587–594.

    CAS  Google Scholar 

  187. Farrel, B.D., Evolutionary Assembly of the Milkweed Fauna: Cytochrome Oxidase 1 and the Age of Tetraopes Beetles, Mol. Phylogenet. Evol., 2001, vol. 18, no. 3, pp. 467–478.

    Google Scholar 

  188. Goto, S.G. and Kimura, M.T., Phylogenetic Utility of Mitochondrial CO1 and Nuclear Gpdh Genes in Drosophila, Mol. Phylogenet. Evol., 2001, vol. 18, no. 3, pp. 404–422.

    PubMed  CAS  Google Scholar 

  189. Dijikstra, E., Rubio, J.M., and Post, R.J., Resolving Relationship Over a Wide Taxonomic Range in Dephacidae (Homoptera) Using the CO1 Gene, Sys. Entomol., 2003, vol. 28, pp. 89–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Y.P. Kartavtsev, J.-S. Lee, 2006, published in Genetika, 2006, Vol. 42, No. 4, pp. 437–461.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartavtsev, Y.P., Lee, J.S. Analysis of nucleotide diversity at the cytochrome b and cytochrome oxidase 1 genes at the population, species, and genus levels. Russ J Genet 42, 341–362 (2006). https://doi.org/10.1134/S1022795406040016

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406040016

Keywords

Navigation