Skip to main content
Log in

Unintentional genetic processes in artificially maintained populations: Proving the leading role of selection in evolution

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review considers studies examining artificially maintained populations as models for understanding biological evolution. The key factors of gene pool evolution—random processes, interspecific hybridization, migration, mutation, and selection—are analyzed. We present evidence indicating that selection is the leading evolutionary factor that regulates the operation of other factors, directly or through genetic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Akademkniga, 2003, 3rd ed.

    Google Scholar 

  2. Mayr, E., Populations, Species, and Evolution, Cambridge (Mass.): Harvard Univ. Press, 1970.

    Google Scholar 

  3. Hedrick, P.W., Genetics of Populations, Sudbary: Jones and Bartlett, 1999.

    Google Scholar 

  4. Konovalov, S.M., Subisolate As a Relatively Rigid System: Function of a Subisolate, Zh. Obshch. Biol., 1975, vol. 36, no. 5, pp. 731–743.

    Google Scholar 

  5. Darwin, C., The Variation of Animals and Plants under Domestication, London: Murray, 1868.

    Google Scholar 

  6. Pechurkin, N.S., Bril’kov, A. V., and Marchenkova, T.V., Populyatsionnye aspekty biotekhnologii (Population Aspects of Biotechnology), Novosibirsk: Nauka, 1990.

    Google Scholar 

  7. Nikonorov, S.I., Ofitserov, M.V., Vitvitskaya, L.V., and Loenko, A.A., Uncontrollable Genetic Selection in Salmons, Rybn. Khoz., 1989, no. 1, pp. 54–55.

  8. Frankham, R., Ballou, J.D., and Briscoe, D.A., Introduction to Conservation Genetics, Cambridge: Cambridge Univ. Press, 2002.

    Google Scholar 

  9. Agaev, M.G., Eksperimental’naya evolyutsiya (na primere model’nykh populyatsii avtogamnykh rastenii) (Experimental Evolution (Exemplified by Model Populations of Autogamous Plants)), Leningrad: Leninger. Gos. Univ., 1978.

    Google Scholar 

  10. Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ. Press, 1983.

    Google Scholar 

  11. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Google Scholar 

  12. Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, Cambridge: Cambridge Univ. Press, 2000.

    Google Scholar 

  13. Atchley, W.R. and Fitch, W.R., Gene Trees and the Origins of Inbred Strains of Mice, Science, 1991, vol. 254, no. 5031, pp. 554–558.

    CAS  PubMed  Google Scholar 

  14. Bull, J.J., Cunningham, C.W., Molineux, I.J., et al., Experimental Molecular Evolution of Bacteriophage T7, Evolution, 1993, vol. 47, no. 4, pp. 993–1007.

    CAS  Google Scholar 

  15. Oakley, T.H. and Cunningham, C.W., Independent Contrasts Succeed Where Ancestor Reconstruction Fails in a Known Bacteriophage Phylogeny, Evolution, 2000, vol. 54, no. 2, pp. 397–405.

    CAS  PubMed  Google Scholar 

  16. Cunningham, C.W., Zhu, H., and Hillis, D.M., Best-Fit Maximum-Likelihood Models for Phylogenetic Inference: Empirical Tests with Known Phylogenies, Evolution, 1998, vol. 52, no. 4, pp. 978–987.

    Google Scholar 

  17. Glazko, V.I., Changes in Genetic Distances during Breed Development, Zh. Obshch. Biol., 1987, vol. 48, no. 3, pp. 389–397.

    CAS  PubMed  Google Scholar 

  18. Ralls, K. and Ballou, J., Extinction: Lessons from Zoos, Genetics and Conservation, Sconewald-Cox, C.M., Chambers, S.M., MacBryde, B., and Thomas, W.L., Eds., Menlo Park: Benjamin/Cummings, 1983, pp. 164–184.

    Google Scholar 

  19. Laikre, L., Hereditary Defects and Conservation Genetic Management of Captive Populations, Zoo Biol., 1999, vol. 18, pp. 81–99.

    Article  Google Scholar 

  20. Hedrick, P.W. and Kalinowski, S.T., Inbreeding Depression in Conservation Biology, Annu. Rev. Ecol. Syst., 2000, vol. 31, pp. 139–162.

    Article  Google Scholar 

  21. Reed, D.H., Lowe, E.H., Briscoe, D.A., and Frankham, R., Fitness and Adaptation in a Novel Environment: Effect of Inbreeding, Prior Environment, and Lineage, Evolution, 2003, vol. 57, no. 8, pp. 1822–1828.

    PubMed  Google Scholar 

  22. Crnokrak, P. and Barrett, S.C.H., Purging the Genetic Load: A Review of the Experimental Evidence, Evolution, 2002, vol. 56, no. 12, pp. 2347–2358.

    PubMed  Google Scholar 

  23. Wang, S., Hard, J.J., and Utter, F., Salmonid Inbreeding: A Review, Rev. Fish Biol. Fisheries, 2002, vol. 11, pp. 301–319.

    Google Scholar 

  24. Hugnes, K.A. and Sawby, R., Genetic Variability and Life-History Evolution, Evolutionary Conservation Biology, Ferriere, R., Dieckmann, U., and Couvet, D., Eds., Cambridge: Cambridge Univ. Press, 2004, pp. 119–135.

    Google Scholar 

  25. Zeyl, C., Mizesko, M., and de Visser, J.A.G.M., Mutational Meltdown in Laboratory Yeast Populations, Evolution, 2001, vol. 55, no. 5, pp. 909–917.

    CAS  PubMed  Google Scholar 

  26. Poon, A. and Chao, L., Drift Increases the Advantage of Sex in RNA Bacteriofage Φ6, Genetics, 2004, vol. 166, pp. 19–24.

    Article  PubMed  Google Scholar 

  27. Shilov, I.A., Population Homeostasis, Zool. Zh., 2002, vol. 81, no. 9, pp. 1029–1047.

    Google Scholar 

  28. Vasilyeva, L.A., Ratner, V.A., and Bubenshchikova, E.V., Stress Induction of Retrotransposon Transpositions in Drosophila: Reality of the Phenomenon, Characteristics Features, and Possible Role in Rapid Evolution, Rus. J. Genet., 1997, vol. 33, no. 8, pp. 918–927.

    CAS  Google Scholar 

  29. Merila, J., Sheldon, B.C., and Kruuk, L.E.B., Explaining Stasis: Microevolutionary Studies in Natural Populations, Genetics, 2001, vols. 112–113, pp. 199–222.

    Google Scholar 

  30. Dinamika populyatsionnykh genofondov pri antropogennykh vozdeistviyakh (Dynamics of Population Gene Pools under Anthropogenic Influence), Altukhov, Yu.P., Ed., Moscow: Nauka, 2004.

    Google Scholar 

  31. Frankham, R., Inbreeding and Extinction: Island Populations, Cons. Biol., 1998, vol. 12, no. 3, pp. 665–675.

    Google Scholar 

  32. Frankham, R., Lees, K., Montgomery, M.E., et al., Do Population Size Bottlenecks Reduce Evolutionary Potential?, Anim. Conservation, 1999, vol. 2, pp. 255–260.

    Google Scholar 

  33. Whitlock, M.C., Phillips, P.C., and Fowler, K., Persistence of Changes in the Genetic Covariance Matrix after a Bottleneck, Evolution, 2002, vol. 56, no. 10, pp. 1968–1975.

    PubMed  Google Scholar 

  34. Shvarts, S.S., Pokrovskii, A.V., and Ovchinnikova, N.A., Experimental Analysis of the Founder Principle, Trudy Inst. Biol. Ural’sk. Filiala Akad. Nauk SSSR, 1966, no. 51, pp. 29–33.

  35. Carson, H.L., Increased Genetic Variance after a Population Bottleneck, Trends Ecol. Evol., 1990, vol. 5, no. 7, pp. 228–230.

    Article  Google Scholar 

  36. Meffert, L.M., How Speciation Experiments Relate to Conservation Biology, BioScince, 1999, vol. 49, no. 9, pp. 701–711.

    Google Scholar 

  37. Hoenigsberg, H.F. and Santibanez, S.K., Courtship and Sensory Preferences in Inbred Lines of Drosophila melanogaster, Evolution, 1960, vol. 14, no. 1, pp. 1–7.

    Google Scholar 

  38. Carson, H.L. and Templeton, A.R., Genetic Revolutions in Relation to Speciation Phenomena: The Founding of New Populations, Annu. Rev. Ecol. Syst., 1984, vol. 15, pp. 97–131.

    Article  Google Scholar 

  39. Ringo, J., Wood, D., Rockwell, R., and Dowse, H., An Experiment Testing Two Hypotheses of Speciation, Am. Nat., 1985, vol. 126, no. 5, pp. 642–661.

    Article  Google Scholar 

  40. Barton, N.H. and Charlesworth, B., Genetic Revolutions, Founder Effects, and Speciation, Annu. Rev. Ecol. Syst., 1984, vol. 15, pp. 133–164.

    Article  Google Scholar 

  41. Rice, W.R. and Hostert, E.E., Laboratory Experiments on Speciation: What Have We Learned in 40 Years?, Evolution, 1993, vol. 47, no. 6, pp. 1637–1653.

    Google Scholar 

  42. Florin, A.-B. and Odeen, A., Laboratory Environments Are Not Conducive for Allopatric Speciation, J. Evol. Biol., 2002, vol. 15, pp. 10–19.

    Article  Google Scholar 

  43. Arnold, M.L. and Burke, J.M., Natural Hybridization, Evolutionary Genetics: Concepts and Case Studies, Fox, C.W. and Wolf, J.B., Eds., Oxford: Oxford Univ. Press, 2005.

    Google Scholar 

  44. Vuorinen, J. and Piironen, J., Electrophoretic Identification of Atlantic Salmon (Salmo salar), Brown Trout (S. trutta), and Their Hybrids, Can. J. Fish. Aquat. Sci., 1984, vol. 41, pp. 1834–1837.

    Google Scholar 

  45. Semenova, S.K. and Slyn’ko, V.I., Protein Polymorphism in Populations of Atlantic Trout Salmo salar L., Brown Trout S. trutta L.) and Their Hybrids, Genetika (Moscow), 1988, vol. 24, no. 3, pp. 548–555.

    Google Scholar 

  46. Makhrov, A.A., Artamonova, V.S., Christoforov, O.L., et al., Hybridization between Atlantic Salmon Salmo salar L. and Brown Trout S. trutta L. upon Artificial Propagation, Rus. J. Genet., 2004, vol. 40, no. 11, pp. 1258–1263.

    Article  CAS  Google Scholar 

  47. Ayllon, F., Martinez, J.L., Davaine, P., et al., Interspecific Hybridization between Atlantic Salmon and Brown Trout Introduced in the Subantarctic Kerguelen Islands, Aquaculture, 2004, vol. 230, pp. 81–88.

    Article  CAS  Google Scholar 

  48. Flajshans, M. and Vajcova, V., Odd Ploidy Levels in Sturgeons Suggest a Backcross of Interspecific Hexaploid Sturgeon Hybrids to Evolutionarily Tetraploid and/or Octaploid Parental Species, Folia Zool., 2000, vol. 49, no. 2, pp. 133–138.

    Google Scholar 

  49. Bartley, D.M., Rana, K., and Immink, A.J., The Use of Inter-Specific Hybrids in Aquaculture and Fisheries, Rev. Fish Biol. Fisheries, 2001, vol. 10, pp. 325–337.

    Google Scholar 

  50. Schreiber, A., Wang, M., and Kaumanns, W., Captive Breeding of Squirrel Monkeys, Saimiri sciureus and Saimiri boliviensis: The Problem of Hybrid Groups, Zoo Biol., 1998, vol. 17, pp. 95–109.

    Article  Google Scholar 

  51. Sakai, K.-I., Competition in Plants and Its Relation to Selection, Cold Spring Harbor Symp. Quant. Biol., 1955, vol. 20, pp. 137–157.

    CAS  PubMed  Google Scholar 

  52. Higgie, M., Chenoweth, S., and Blows, M.W., Natural Selection and the Reinforcement of Mate Recognition, Science, 2000, vol. 290, no. 5491, pp. 519–521.

    Article  CAS  PubMed  Google Scholar 

  53. Lewis, H., Experimental Sympatric Populations of Clarkia, Am. Nat., 1961, vol. 95, no. 882, pp. 155–168.

    Article  Google Scholar 

  54. Frankham, R., Hemmer, H., Ryder, O.A., et al., Selection in Captive Populations, Zoo Biol., 1986, vol. 5, no. 2, pp. 127–138.

    Article  Google Scholar 

  55. Shvarts, S.S., Ekologicheskie zakonomernosti evolyutsii (Ecological Regularities in Evolution), Moscow: Nauka, 1980.

    Google Scholar 

  56. Kreslavskii, A.G., Nonrandom Migration: Consequences for the Variation of Quantitative Traits, Zh. Obshch. Biol., 1987, vol. 48, no. 5, pp. 602–613.

    Google Scholar 

  57. Margan, S.H., Nurthen, R.K., Montgomery, M.E., et al., Single Large or Several Small? Population Fragmentation in the Captive Management of Endangered Species, Zoo Biol., 1998, vol. 17, pp. 467–480.

    Article  Google Scholar 

  58. Woodworth, L.M., Montgomery, M.E., Briscoe, D.A., and Frankham, R., Rapid Genetic Deterioration in Captive Populations: Causes and Conservation Implications, Cons. Genet., 2002, vol. 3, pp. 277–288.

    CAS  Google Scholar 

  59. Mirales, R., Moya, A., and Elena, S.F., Effects of Population Patchiness and Migration Rates on the Adaptation and Divergence of Vesicular Stomatitis Virus Quasispecies Populations, J. Gen. Virol., 1999, vol. 80, pp. 2051–2059.

    Google Scholar 

  60. Cuevas, J.M., Moya, A., and Elena, S.F., Evolution of RNA Virus in Spatially Structured Heterogeneous Environments, J. Evol. Biol., 2003, vol. 16, pp. 456–466.

    Article  CAS  PubMed  Google Scholar 

  61. Templeton, A.R., Coadaptation and Outbreeding Depression, Conservation Biology: The Sciences of Scarcity and Diversity, Soule, M.E., Ed., Sunderland: Sinauer, 1986, pp. 105–116.

    Google Scholar 

  62. Nazarov, V.I., Importance of J. Tessier’s Studies for the Development of the Synthetic Theory of Evolution, in Problemy noveishei istorii evolyutsionnogo ucheniya (Problems of the Contemporary History of the Theory of Evolution), Leningrad, 1981, pp. 136–147.

  63. Dubinin, N.P., Evolyutsiya populyatsii i radiatsiya (Population Evolution and Radiation), Moscow: Atomizdat, 1966.

    Google Scholar 

  64. Gershenzon, S.M., “Mobilization Reserve” of Intraspecific Variation, Zh. Obshch. Biol., 1941, vol. 2, no. 1, pp. 85–107.

    Google Scholar 

  65. Huxley, J., Evolution: The Modern Synthesis, New York: Harper & Brothers, 1943.

    Google Scholar 

  66. Schmalhausen, I.I., Faktory evolyutsii (Factors of Evolution), Moscow: Nauka, 1968.

    Google Scholar 

  67. Kreslavskii, A.G., Novel View of the Adaptive Character of Polymorphism: A Concept of Pseudoneutral Mutations, Zh. Obshch. Biol., 1993, vol. 54, no. 6, pp. 645–658.

    Google Scholar 

  68. Radman, M., Matic, I., and Taddei, F., Evolution of Evolvability, Molecular Strategies in Biological Evolution, Caporale, L.H., Ed., New York: Acad. Sci., 1999, pp. 146–155.

    Google Scholar 

  69. Hall, B.G., Adaptive Mutagenesis: A Process That Generates Almost Exclusively Beneficial Mutations, Genetics, 1998, vols. 102–103, pp. 109–125.

    Google Scholar 

  70. Kallis, Kh.A., Environment as a Generator of Adaptive Changes, in Sovremennye kontseptsii evolyutsionnoi genetiki (Modern Concepts of Evolutionary Genetics), Novosibirsk, 2000, pp. 168–174.

  71. Grishaeva, T.M. and Ivashchenko, N.I., Problems of Structural-Functional Interactions in Hybrid Dysgenesis Systems, Usp. Sovrem. Biol., 1997, vol. 117, no. 1, pp. 52–67.

    Google Scholar 

  72. Belyaeva, E.Sp., Pasyukova, E.G., and Gvozdev, V.A., Adaptive Transpositions of Retrotransposons Accompanied by Fitness Changes in the Drosophila melanogaster Genome, Rus. J. Genet., 1994, vol. 30, no. 6, pp. 641–645.

    Google Scholar 

  73. Hartl, D.L., Dykhuizen, D.E., Miller, R.D., et al., Transposable Element IS50R Improves Growth Rate of E. coli without Transposition, Cell (Cambridge, Mass.), 1983, vol. 35, no. 2, pp. 503–510.

    CAS  Google Scholar 

  74. Adams, J., Microbial Evolution in Laboratory Environment, Res. Microbiol., 2004, vol. 155, pp. 311–318.

    Article  CAS  PubMed  Google Scholar 

  75. Elena, S.F. and Lenski, R.E., Evolution Experiments with Microorganisms: The Dynamics and Genetic Bases of Adaptation, Nat. Rev. Genet., 2003, vol. 4, pp. 457–469.

    Article  CAS  PubMed  Google Scholar 

  76. Cutter, A.D., Mutation and the Experimental Evolution of Outcrossing in Caenorhabditis elegans, J. Evol. Biol., 2005, vol. 18, pp. 27–34.

    Article  CAS  PubMed  Google Scholar 

  77. Zeyl, C. and Bell, G., The Advantage of Sex in Evolving Yeast Populations, Nature, 1997, vol. 388, no. 6641, pp. 465–468.

    Article  CAS  PubMed  Google Scholar 

  78. Tsilinskii, Ya.Ya. and L’vov, D.K., Populyatsionnaya genetika virusov pozvonochnykh (Population Genetics of Vertebrate Viruses), Moscow: Meditsina, 1977.

    Google Scholar 

  79. Lukashenko, N.P. and Rybakova, Z.I., Genetika infuzorii (Infusorium Genetics), Moscow: Nauka, 1986.

    Google Scholar 

  80. Rapoport, I.A., Geny, evolyutsiya, selektsiya (Genes, Evolution, Breeding), Moscow: Nauka, 1996.

    Google Scholar 

  81. Rozhkov, Yu.I. and Pronyaev, A.V., Mikroevolyutsionnyi protsess (Microevolutionary Process), Moscow: Tsentr. Lab. Okhot. Khoz. i Zapoved., 1994.

    Google Scholar 

  82. Altukhov, Yu.P., Mezhzherin, S.V., Salmenkova, E.A., and Omel’chenko, V.T., Effect of Selective Fish Farming on the Adaptive Genetic and Biological Structures of Pink Salmon Oncorhynchus gorbuscha (Walb.), Genetika (Moscow), 1989, vol. 25, no. 10, pp. 1843–1853.

    Google Scholar 

  83. McLean, J.E., Bentsen, P., and Quinn, T.P., Nonrandom, Size-and Timing-Biased Breeding in a Hatchery Population of Steelhead Trout, Cons. Biol., 2005, vol. 19, no. 2, pp. 446–454.

    Google Scholar 

  84. Shabalina, S.A., Yampolsky, L.Y., and Kondrashov, A.S., Rapid Decline of Fitness in Panmictic Populations of Drosophila melanogaster Maintained under Relaxed Natural Selection, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 13 034–13 039.

    Article  CAS  Google Scholar 

  85. Hoffmann, A.A., Hallas, R., Sinclair, C., and Partridge, L., Rapid Loss of Stress Resistance in Drosophila melanogaster under Adaptation to Laboratory Culture, Evolution, 2001, vol. 55, no. 2, pp. 436–438.

    CAS  PubMed  Google Scholar 

  86. Carson, H.L., Chang, L.S., and Lyttle, T.W., Decay of Female Sexual Behavior under Parthenogenesis, Science, 1982, vol. 218, no. 4567, pp. 68–70.

    Google Scholar 

  87. Lima, J.B.P., Valle, D., and Peixoto, A.A., Adaptation of a South American Malaria Vector to Laboratory Colonization Suggests Faster-Male Evolution for Mating Ability, BMC Evol. Biol., 2004, vol. 4, no. 2 (www.biomedcentral.com/bmcevolbiol/).

  88. Ajie, B.C., Estes, S., Lynch, M., and Phillips, P.C., Behavioral Degradation under Mutation Accumulation in Caenorhabditis elegans, Genetics, 2005, vol. 170, pp. 655–660.

    Article  PubMed  Google Scholar 

  89. Lenski, R.E., Phenotypic and Genomic Evolution during a 20 000-Generation Experiment with the Bacterium Escherichia coli, Plant Breed. Rev., 2004, vol. 24, part 2, pp. 225–265.

    Google Scholar 

  90. Behr, M.A., Wilson, M.A., Gill, W.P., et al., Comparative Genomics of BCG Vaccines by Whole-Genome DNA Microarray, Science, 1999, vol. 284, pp. 1520–1523.

    Article  CAS  PubMed  Google Scholar 

  91. Khlebovich, V.V., The Susceptibility to Loss of Diapause Capacity in Hydrobionts of Ephemeral Waterbodies, Hydrobiologia, 1996, vol. 320, pp. 83–84.

    Google Scholar 

  92. Pristavko, V.P., Olfactory Sensitivity As a Criterion of the Viability of Insect Cultures, Pervoe Vses. soveshch. po problemam zookul’tury. Tez. dokl. (Proc. 1st All-Union Conf. on Problems of Zooculture), Moscow, 1986, part 3, pp. 240–241.

  93. Bradley, B.P., Developmental Stability of Drosophila melanogaster under Artificial and Natural Selection in Constant and Fluctuating Environments, Genetics, 1980, vol. 95, pp. 1033–1042.

    CAS  PubMed  Google Scholar 

  94. Imasheva, A.G., Kholodenko, D.B., and Zhivotovsky, L.A., Decrease in Variation of Wing Traits in Laboratory Populations of Drosophila melanogaster, Genetika (Moscow), 1986, vol. 22, no. 9, pp. 2291–2294.

    Google Scholar 

  95. Carson, H.L., Genetic Conditions Which Promote or Retard the Formation of Species, Cold Spring Harbor Symp. Quant. Biol., 1959, vol. 24, pp. 87–105.

    CAS  PubMed  Google Scholar 

  96. Mitton, J.B., Selection in Natural Populations, Oxford: Oxford Univ. Press, 1997.

    Google Scholar 

  97. Zhivotovsky, L.A., Integratsiya poligennykh sistem v populyatsiyakh (Integration of Polygenic Systems in Populations), Moscow: Nauka, 1984.

    Google Scholar 

  98. Luchnikova, E.M., Microevolutinary Role of Frequency-Dependent Selection and Ecological Prerequisites to Its Origin, in Problemy noveishei istorii evolyutsionnogo ucheniya (Problems of the Contemporary History of the Theory of Evolution), Leningrad, 1981, pp. 95–114.

  99. Grechanyi, G.V., Nikitin, A.Ya., Korzun, V.M., and Sosunova, I.A., Ekologo-geneticheskaya determinatsiya dinamiki chislennosti populyatsii (Ecological Genetic Determination of the Dynamics of Population Size), Irkutsk: Irkutsk. Gos. Univ., 2004.

    Google Scholar 

  100. MacLean, R.C., Adaptive Radiation in Microbial Microcosms, J. Evol. Biol., 2005, vol. 18, no. 6, pp. 1376–1386.

    PubMed  Google Scholar 

  101. Ermakova, N.I. and Efimov, V.M., Cyclic Changes in the State of a Laboratory Population of Beet Webworm Loxostege sticticalis L. (Insecta), Zh. Obshch. Biol., 1995, vol. 56, no. 3, pp. 380–390.

    Google Scholar 

  102. Holland, J., Spindler, K., Hododyski, F., et al., Rapid Evolution of RNA Genomes, Science, 1982, vol. 215, no. 4540, pp. 1577–1585.

    CAS  PubMed  Google Scholar 

  103. Korona, R., Genetic Divergence and Fitness Convergence under Uniform Selection in Experimental Populations of Bacteria, Genetics, 1996, vol. 143, pp. 637–644.

    CAS  PubMed  Google Scholar 

  104. Allard, R.W., Genetic Changes Associated with the Evolution of Adaptedness in Cultivated Plants and Their Wild Progenitors, J. Hered., 1988, vol. 79, no. 4, pp. 225–238.

    CAS  PubMed  Google Scholar 

  105. Ellerstrom, S. and Hagberg, A., Competition between Diploids and Tetraploids in Mixed Rye Populations, Hereditas (Lund, Swed.), 1954, vol. 40, nos. 3–4, pp. 535–537.

    Google Scholar 

  106. Jeon, K.W., Development of Cellular Dependence on Infective Organisms: Micrurgical Studies in Amoebas, Science, 1972, vol. 176, no. 4093, pp. 1122–1123.

    CAS  PubMed  Google Scholar 

  107. Stewart, A.D. and Phillips, P.C., Selection and Maintenance of Androdioecy in Caenorhabiditis elegans, Genetics, 2002, vol. 160, pp. 975–982.

    PubMed  Google Scholar 

  108. Gilligan, D.M. and Frankham, R., Dynamics of Genetic Adaptation to Captivity, Cons. Genet., 2003, vol. 4, pp. 189–197.

    Google Scholar 

  109. Matos, M., Avelar, T., and Rose, M.R., Variation in the Rate of Convergent Evolution: Adaptation to a Laboratory Environment in Drosophila subobscura, J. Evol. Biol., 2002, vol. 15, pp. 673–682.

    Article  Google Scholar 

  110. Pascual, M., Constanti, M., Ribo, G., and Prevosti, A., Genetic Changes in Mating Activity in Laboratory Strains of Drosophila subobscura, Genetics, 1990, vol. 80, no. 1, pp. 39–43.

    CAS  Google Scholar 

  111. Ayala, F.J., Evolution of Fitness: II. Correlated Effects of Natural Selection on the Productivity and Size of Experimental Populations of Drosophila serrata, Evolution, 1968, vol. 22, pp. 55–65.

    Google Scholar 

  112. Bush, G.L., Genetic Variation in Natural Insect Populations and Its Bearing on Mass-Rearing Programmes, in Controlling Fruit Flies by the Sterile-Insect Technique, Vienna, 1975, pp. 9–17.

  113. Nazarova, A.V. and Kreslavskii, A.G., Genetic Difference in the Response to Population Density between Poecilia reticulata from an Aquarium Culture and a Population from the Moskva River, Vopr. Ikhtiol., 1998, vol. 38, no. 1, pp. 73–80.

    Google Scholar 

  114. Artamonova, V.S., Makhrov, A.A., and Kholod, O.N., Uncontrolled Selection in Brood Stocks of Atlantic Salmon Salmo salar L., Lososevidnye ryby Vostochnoi Fennoskandii (Salmonids of Eastern Fennoscandia), Petrozavodsk, 2005 (in press).

  115. Heath, D.D., Heath, J.W., Bryden, C.A., et al., Rapid Evolution of Egg Size in Captive Salmon, Science, 2003, vol. 299, pp. 1738–1740.

    Article  CAS  PubMed  Google Scholar 

  116. Fleming, I.A., Einum, S., Jonsson, B., and Jonsson, N., Comment on “Rapid Evolution of Egg Size in Captive Salmon,” Science, 2003, vol. 302, p. 59.

    Article  CAS  PubMed  Google Scholar 

  117. Reisenbichler, R.R., Uncertainty and Research Needs for Supplementing Wild Populations of Anadromous Pacific Salmon, Am. Fish. Soc. Symp., 2004, vol. 44, pp. 263–275.

    Google Scholar 

  118. Leopold, A.S., The Nature of Heritable Wildness in Turkeys, Condor, 1944, vol. 46, no. 4, pp. 133–197.

    Google Scholar 

  119. Kuznetsova, I.A., True Lemmings (Genus Lemmus) As a Model for Studying Adaptation to Arctic Conditions, Pervoe Vses. soveshch. po problemam zookul’tury. Tez. dokl. (Proc. 1st All-Union Conf. on Problems of Zooculture), Moscow, 1986, part 2, pp. 216–218.

  120. Belyaev, D.K. and Borodin, P.M., Effect of Stress on Hereditary Variation and Its Evolutionary Role, in Evolyutsionnaya genetika (Evolutionary Genetics), Leningrad, 1982, pp. 35–59.

  121. Price, E.O., Behavioral Aspects of Animal Domestication, Q. Rev. Biol., 1984, vol. 59, no. 1, pp. 1–32.

    Article  Google Scholar 

  122. Trapezov, O.V., Domestication As a Possible Mode of Biodeiversity Conservation (Through the Example of River Otter Lutra lutra L., 1758), Rus. J. Genet., 1997, vol. 33, no. 8, pp. 990–994.

    CAS  Google Scholar 

  123. Vavilov, N.I., Global Resources of Frost-Resistant Cultivars of Winter Wheat, Rye, and Barley, in Vavilov, N.I., Teoreticheskie osnovy selektsii (Theoretical Basis of Breeding), Moscow: Nauka, 1987, pp. 80–86.

    Google Scholar 

  124. Tsinger, N.V., On Camelina and Spergula Species Growing on Flax Fields, Tr. Bot. Muzeya Imp. Akad. Nauk, 1909, no. 6, pp. 1–303.

  125. Estes, S. and Lynch, M., Rapid Fitness Recovery in Mutationally Degraded Lines of Caenorhabditis elegans, Evolution, 2003, vol. 57, no. 5, pp. 1022–1030.

    PubMed  Google Scholar 

  126. Haldane, J.B.S., The Cost of Natural Selection, J. Genet., 1957, vol. 55, no. 3, pp. 509–515.

    Google Scholar 

  127. Severtsov, A.S., On the Causes of Evolutionary Stasis, Zool. Zh., 2004, vol. 83, no. 8, pp. 927–935.

    Google Scholar 

  128. Holland, B. and Rice, W.R., Experimental Removal of Sexual Selection Reverses Intersexual Antagonistic Coevolution and Removes a Reproductive Load, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 5083–5088.

    Article  CAS  PubMed  Google Scholar 

  129. Lyttle, T.W., Segregation Distorters, Annu. Rev. Genet., 1991, vol. 25, pp. 511–557.

    Article  CAS  PubMed  Google Scholar 

  130. Tsinger, N., Alectorolophus major Rchnb. Subspecies of Regions Affected by Crops and Their Origin via Natural Selection, Tr. Tiflissk. Bot. Sada, 1913, issue 12, book 2, pp. 179–190.

  131. Bradshaw, A.D., Genostasis and the Limits of Evolution, Philos. Trans. R. Soc. London, B, 1991, vol. 333, no. 1267, pp. 289–305.

    CAS  Google Scholar 

  132. Sgro, C.M. and Partridge, L., Evolutionary Responses of the Life History of Wild-Caught Drosophila melanogaster to Two Standard Methods of Laboratory Culture, Am. Nat., 2000, vol. 156, no. 4, pp. 341–353.

    Google Scholar 

  133. Raushenbakh, Yu.O., Regularities in Ecogenesis of Domestic Animals, Genetika (Moscow), 1981, vol. 17, no. 9, pp. 1663–1676.

    Google Scholar 

  134. Kassen, R., The Experimental Evolution of Specialists, Generalists, and the Maintenance of Diversity, J. Evol. Biol., 2002, vol. 15, pp. 173–190.

    Article  Google Scholar 

  135. Ritter, J.A., Lower Ocean Survival Rates for Hatchery-Reared Atlantic Salmon (Salmo salar) Stocks Released in Rivers Other Than Their Native Streams, ICES, 1975, M:26.

  136. Reisenbichler, R.R., Relation between Distance Transferred from Natal Stream and Recovery Rate for Hatchery Coho Salmon, North Am. J. Fish. Man., 1988, vol. 8, pp. 172–174.

    Google Scholar 

  137. Salmenkova, E.A., Altukhov, Yu.P., Viktorovskii, R.M., et al., Genetic Structure of Calico Salmon Populations Spawning in Rivers of the Russian Far East and Northeastern Soviet Union, Zh. Obshch. Biol., 1986, vol. 47, no. 4, pp. 529–549.

    Google Scholar 

  138. Kirpichnikov, V.S., Adaptive Significance of Biochemical Polymorphism of Populations, Zh. Obshch. Biol., 1987, vol. 48, no. 1, pp. 3–14.

    CAS  PubMed  Google Scholar 

  139. Golubtsov, A.S., Vnutripopulyatsionnaya izmenchivost’ zhivotnykh i belkovyi polimorfizm (Intrapopulation Variation of Animals and Protein Polymorphism), Moscow: Nauka, 1988.

    Google Scholar 

  140. Krutovskii, K.V., Modern Approaches to Studies of the Effect of Selection on Enzyme Loci, Usp. Sovrem. Biol., 1988, vol. 106, no. 3, pp. 323–339.

    CAS  Google Scholar 

  141. Britten, H.B., Meta-Analyses of the Association between Multilocus Heterozygosity and Fitness, Evolution, 1996, vol. 50, no. 6, pp. 2158–2164.

    Google Scholar 

  142. Watt, W.B. and Dean, A.M., Molecular-Functional Studies of Adaptive Genetic Variation in Prokaryotes and Eukaryotes, Annu. Rev. Genet., 2000, vol. 34, pp. 593–622.

    Article  CAS  PubMed  Google Scholar 

  143. Dubrova, Yu.E., Salmenkova, E.A., Altukhov, Yu.P., et al., The Influence of Parental Heterozygosity on Interfamily Variation of the Progeny Body Length in Pink Salmon, Rus. J. Genet., 1994, vol. 30, no. 3, pp. 365–371.

    Google Scholar 

  144. Varnavskaya, N.V., Principles of Genetic Identification of Pacific Salmon Populations of the Genus Oncorhynchus spp. in Connections with Problems of Their Rational Use, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: Inst. Gen. Genet., 2001.

    Google Scholar 

  145. Heath, D.D., Bryden, C.A., Shrimpton, J.M., et al., Relationships between Heterozygosity, Allelic Distance (d(2)), and Reproductive Traits in Chinook Salmon, Oncorhynchus tshawytscha, Can. J. Fish. Aquat. Sci., 2002, vol. 59, pp. 77–84.

    Article  Google Scholar 

  146. Primmer, C.R., Landry, P.-A., Ranta, E., et al., Prediction of Offspring Fitness Based on Parental Genetic Diversity in Endangered Salmonid Populations, J. Fish Biol., 2003, vol. 63, pp. 909–927.

    Article  Google Scholar 

  147. Glazko, V.I. and Sozinov, I.A., Genetika izofermentov zhivotnykh i rastenii (Genetics of Animal and Plant Isozymes), Kiev: Urozhai, 1993.

    Google Scholar 

  148. Wichman, H.A., Millstein, J., and Bull, J.J., Adaptive Molecular Evolution for 13 000 Phage Generations: A Possible Arms Race, Genetics, 2005, vol. 170, pp. 19–31.

    Article  CAS  PubMed  Google Scholar 

  149. Mukai, T., Experimental Verification of the Neutral Theory, Population Genetics and Molecular Evolution, Ohta, T. and Aoki, K., Eds., Berlin: Springer-Verlag, 1985, pp. 125–145.

    Google Scholar 

  150. Kartavtsev, Yu.F., Genetic Differentiation and Integration in Populations of Aquatic Animals, Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg: St. Petersburg State Univ., 1995.

    Google Scholar 

  151. Darlington, C.D., The Evolution of Genetic Systems, Edinburgh: Oliver and Boyd, 1958.

    Google Scholar 

  152. Lewontin, R.C., The Genetic Basis of Evolutionary Change, New York: Columbia Univ. Press, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.S. Artamonova and A.A. Makhrov, 2006, published in Genetika, 2006, Vol. 42, No. 3, pp. 310–324.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artamonova, V.S., Makhrov, A.A. Unintentional genetic processes in artificially maintained populations: Proving the leading role of selection in evolution. Russ J Genet 42, 234–246 (2006). https://doi.org/10.1134/S1022795406030021

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406030021

Keywords

Navigation