Skip to main content
Log in

Methods for detecting single nucleotide polymorphisms: Allele-specific PCR and hybridization with oligonucleotide probe

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The existing diversity of the methods for detecting single nucleotide polymorphisms is so great that may perplex an unsophisticated researcher who chooses the appropriate molecular genetic toolkit. In this work, we tried to systematize and briefly describe the state-of-the-art methods for detecting oligonucleotide polymorphisms that are based on allele-specific PCR and hybridization with oligonucleotide probe as well as to characterize the methods considered with respect to their accuracy, cost, and simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brookes, A.J., The Essence of SNPs, Gene, 1999, vol. 234, pp. 177–186.

    Article  CAS  PubMed  Google Scholar 

  2. International Human Genome Sequencing Consortium, Initial Sequencing and Analysis of the Human Genome, Nature, 2001, vol. 409, pp. 860–921.

  3. Wang, D.G., Fan, J.B., Siao, C.J., et al., Large-Scale Identification, Mapping, and Genotyping of Single-Nucleotide Polymorphisms in the Human Genome, Science, 1998, vol. 280, pp. 1077–1082.

    CAS  PubMed  Google Scholar 

  4. Kruglyak, L. and Nickerson, D.A., Variation Is the Spice of Life, Nat. Genet., 2001, vol. 27, pp. 234–236.

    Article  CAS  PubMed  Google Scholar 

  5. Taillon-Miller, P., Pernot, E.E., Kwok, P.-Y., et al., Efficient Approach to Unique Single-Nucleotide Polymorphism Discovery, Genome Res., 1999, vol. 9, pp. 499–505.

    CAS  PubMed  Google Scholar 

  6. Marth, G.T., Korf, I., Yandell, M.D., et al., A General Approach to Single-Nucleotide Polymorphism Discovery, Nat. Genet., 1999, vol. 23, pp. 452–456.

    Article  CAS  PubMed  Google Scholar 

  7. Kwok, P.-Y., Deng, O., Zakeri, H., et al., Increasing the Information Content of STS-Based Genome Maps: Identifying Polymorphisms in Mapped STSs, Genomics, 1996, vol. 31, pp. 123–126.

    Article  CAS  PubMed  Google Scholar 

  8. Venter, J.C., Adams, M.D., Myers, E.W., et al., The Sequence of the Human Genome, Science, 2001, vol. 291, pp. 1304–1351.

    Article  CAS  PubMed  Google Scholar 

  9. Hirakawa, M., Tanaka, T., Hasimoto, I., et al., JSNP: A Database of Common Gene Variations in the Japanese Population, Nucleic Acids Res., 2002, vol. 30, pp. 158–162.

    CAS  PubMed  Google Scholar 

  10. Taillon-Miller, P., Gu, Z., Li, Q., et al., Overlapping Genomic Sequences: A Treasure Trove of Single-Nucleotide Polymorphisms, Genome Res., 1998, vol. 8, pp. 748–754.

    CAS  PubMed  Google Scholar 

  11. Gupta, P.K., Roy, J.K., and Prasad, M., Single Nucleotide Polymorphisms: A New Paradigm for Molecular Marker Technology and DNA Polymorphism Detection with Emphasis on Their Use in Plants, Curr. Sci., 2001, vol. 80, pp. 524–535.

    CAS  Google Scholar 

  12. Cavalli-Sforza, L.L., The DNA Revolution in Population Genetics, Trends Genet., 1998, vol. 14, pp. 60–65.

    CAS  PubMed  Google Scholar 

  13. Miller, R.D., Taillon-Miller, P., and Kwok, P.-Y., Regions of Low Single-Nucleotide Polymorphism Incidence in Human and Orangutan Xq: Deserts and Recent Coalescences, Genomics, 2001, vol. 1, pp. 78–88.

    Google Scholar 

  14. Weiner, M.P. and Hudson, T.J., Introduction to SNPs: Discovery of Markers for Disease, BioTechniques, 2002, vol. 10, pp. 12–13.

    Google Scholar 

  15. Siddiqui, A., Kerb, R., Weale, M.E., et al., Association of Multidrug Resistance in Epilepsy with a Polymorphism in the Drug-Transporter Gene ABCB1, N. Engl. J. Med., 2003, vol. 348, pp. 1442–1448.

    Article  CAS  PubMed  Google Scholar 

  16. Rowe, S.M., Miller, S., and Sorscher, E.J., Cystic Fibrosis, N. Engl. J. Med., 2005, vol. 352, pp. 1992–2001.

    Article  CAS  PubMed  Google Scholar 

  17. Oguma, T., Palmer, L.J., Birben, E., et al., Role of Prostanoid DP Receptor Variants in Susceptibility to Asthma, N. Engl. J. Med., 2004, vol. 351, pp. 1752–1763.

    Article  CAS  PubMed  Google Scholar 

  18. Hennah, W., Varilo, T., Kestila, M., et al., Haplotype Transmission Analysis Provides Evidence of Association for DISC1 to Schizophrenia and Suggests Sex-Dependent Effects, Hum. Mol. Genet., 2003, vol. 12, pp. 3151–3159.

    Article  CAS  PubMed  Google Scholar 

  19. Mann, V., Hobson, E.E., Li, B., et al., A COL1A1 Sp1 Binding Site Polymorphism Predisposes to Osteoporotic Fracture by Affecting Bone Density and Quality, J. Clin. Invest., 2001, vol. 107, pp. 899–907.

    CAS  PubMed  Google Scholar 

  20. Marth, G., Yeh, R., Minton, M., et al., Single-Nucleotide Polymorphisms in the Public Domain: How Useful Are They?, Nat. Genet., 2001, vol. 27, pp. 371–372.

    Article  CAS  PubMed  Google Scholar 

  21. Oliver, M., Bustos, V., Levy, M., et al., Complex High-Resolution Linkage Disequilibrium and Haplotype Patterns of Single-Nucleotide Polymorphisms in 2.5 Mb of Sequence on Human Chromosome 21, Genomics, 2001, vol. 78, pp. 64–72.

    Google Scholar 

  22. Mir, K.U. and Southern, E.M., Sequence Variation in Genes and Genomic DNA: Methods for Large-Scale Analysis, Annu. Rev. Genomics Hum. Genet., 2000, vol. 1, pp. 329–360.

    Article  CAS  PubMed  Google Scholar 

  23. Landegren, U., Nilsson, M., and Kwok, P.-Y., Reading Bits of Genetic Information: Methods for Single-Nucleotide Polymorphism Analysis, Genome Res., 1998, vol. 8, pp. 769–776.

    CAS  PubMed  Google Scholar 

  24. Jobs, M., Howell, W.M., Stromqvist, L., et al., DASH-2: Flexible, Low-Cost, and High-Throughput SNP Genotyping by Dynamic Allele-Specific Hybridization on Membrane Arrays, Genome Res., 2003, vol. 13, pp. 916–924.

    Article  CAS  PubMed  Google Scholar 

  25. Hsu, T.M., Law, S.M., Duan, S., et al., Genotyping Single-Nucleotide Polymorphisms by the Invader Assay with Dual-Color Fluorescence Polarization Detection, Clin. Chem., 2001, vol. 47, pp. 1373–1377.

    CAS  PubMed  Google Scholar 

  26. Lyamichev, V., Most, A.L., Hall, J.G., et al., Polymorphism Identification and Quantitative Detection of Genomic DNA by Invasive Cleavage of Oligonucleotide Probes, Nat. Biotechnol., 1999, vol. 17, pp. 292–296.

    CAS  PubMed  Google Scholar 

  27. Latif, S., Bauer-Sardina, I., Ranade, K., et al., Fluorescence Polarization in Homogeneous Nucleic Acid Analysis: II. 5-Nuclease Assay, Genome Res., 2000, vol. 29, pp. 436–440.

    Google Scholar 

  28. Alsmadi, O.A., Bornarth, C.J., Song, W., et al., High Accuracy Genotyping Directly from Genomic DNA Using a Rolling Circle Amplification Based Assay, BMC Genomics, 2003, vol. 4, p. 21.

    Article  PubMed  Google Scholar 

  29. Olivier, M., Chuang, L.-M., Chang, M.-S., et al., High-Throughput Genotyping of Single Nucleotide Polymorphisms Using New Biplex Invader Technology, Nucleic Acids Res., 2002, vol. 30, p. e53.

    Article  PubMed  Google Scholar 

  30. Prince, J.A., Feuk, L., Howell, W.M., et al., Robust and Accurate Single Nucleotide Polymorphism Genotyping by Dynamic Allele-Specific Hybridization (DASH): Design Criteria and Assay Validation, Genome Res., 2000, vol. 3, pp. 152–162.

    Google Scholar 

  31. Kuzuya, A., Zhou, J.-M., and Komiyama, M., DNA, PNA, and Their Derivatives for Precise Genotyping of SNPs, Mini-Rev. Organic Chem., 2004, vol. 1, pp. 125–131.

    CAS  Google Scholar 

  32. McDonald, O.G., Krynetski, E.Y., and Evans, W.E., Molecular Haplotyping of Genomic DNA for Multiple Single-Nucleotide Polymorphisms Located Kilobases Apart Using Long-Range Polymerase Chain Reaction and Intramolecular Ligation, Pharmacogenetics, 2002, vol. 12, pp. 93–99.

    Article  CAS  PubMed  Google Scholar 

  33. Newton, C.R., Graham, A., Heptinstall, L.E., et al., Analysis of Any Point Mutation in DNA: The Amplification Refractory Mutation System (ARMS), Nucleic Acids Res., 1989, vol. 17, pp. 2503–2516.

    CAS  PubMed  Google Scholar 

  34. Okayama, H., Curiel, D.T., Brantly, M.L., et al., Rapid, Nonradioactive Detection of Mutations in the Human Genome by Allele-Specific Amplification, J. Lab. Clin. Med., 1989, vol. 114, pp. 105–113.

    CAS  PubMed  Google Scholar 

  35. Papp, A.C., Pinsonneault, J.K., Cooke, G., et al., Single Nucleotide Polymorphism Genotyping Using Allele-Specific PCR and Fluorescence Melting Curves, Bio-Techniques, 2003, vol. 34, pp. 1068–1072.

    CAS  Google Scholar 

  36. Huang, M.M., Arnheim, N., and Goodman, M.F., Extension of Base Mispairs by Taq DNA Polymerase: Implications for Single Nucleotide Discrimination in PCR, Nucleic Acids Res., 1992, vol. 20, pp. 4567–4573.

    CAS  PubMed  Google Scholar 

  37. Sarkar, G., Cassady, G., Bottema, C.D., et al., Characterization of Polymerase Chain Reaction Amplification of Specific Alleles, Anal. Biochem., 1990, vol. 186, pp. 64–68.

    Article  CAS  PubMed  Google Scholar 

  38. Ehlen, T. and Dubeau, L., Detection of ras Point Mutations by Polymerase Chain Reaction Using Mutation-Specific, Inosine-Containing Oligonucleotide Primers, Biochem. Biophys. Res. Commun., 1989, vol. 160, pp. 441–447.

    Article  CAS  PubMed  Google Scholar 

  39. Sommer, R. and Tautz, D., Minimal Homology Requirements for PCR Primers, Nucleic Acids Res., 1989, vol. 17, p. 6749.

    CAS  PubMed  Google Scholar 

  40. Ye, S., Dhillon, S., Ke, X., et al., An Efficient Procedure for Genotyping Single Nucleotide Polymorphisms, Nucleic Acid Res., 2001, vol. 29, p. e88.

    CAS  PubMed  Google Scholar 

  41. Liu, Q., Thorland, E.C., and Heit, J.A., Overlapping PCR for Bidirectional PCR Amplification of Specific Alleles: A Rapid One-Tube Method for Simultaneously Differentiating Homozygotes and Heterozygotes, Genome Res., 1997, vol. 7, pp. 389–398.

    CAS  PubMed  Google Scholar 

  42. Tindall, K.R. and Kunkel, T.A., Fidelity of DNA Synthesis by the Thermus aquaticus DNA Polymerase, Biochemistry, 1988, vol. 27, pp. 6008–6013.

    Article  CAS  PubMed  Google Scholar 

  43. Arnheim, N. and Erlich, H., Polymerase Chain Reaction Strategy, Annu. Rev. Biochem., 1992, vol. 61, pp. 131–156.

    Article  CAS  PubMed  Google Scholar 

  44. Bustin, S.A., Absolute Quantification of mRNA Using Real-Time Reverse Transcription Polymerase Chain Reaction Assays, J. Mol. Endocrinol., 2000, vol. 25, pp. 169–193.

    Article  CAS  PubMed  Google Scholar 

  45. Schmittgen, T.D., Real-Time Quantitative PCR, Methods, 2001, vol. 25, pp. 383–385.

    Article  CAS  PubMed  Google Scholar 

  46. Klein, D., Quantification Using Real-Time PCR Technology: Applications and Limitations, Trends Mol. Med., 2002, vol. 8, pp. 257–260.

    CAS  PubMed  Google Scholar 

  47. Ruano, G. and Kidd, K.K., Direct Haplotyping of Chromosomal Segments from Multiple Heterozygotes Via Allele-Specific PCR Amplification, Nucleic Acids Res., 1989, vol. 17, p. 8392.

    CAS  PubMed  Google Scholar 

  48. Rust, S., Funke, H., and Assman, G., Mutagenically Separated PCR (MS-PCR): A Highly Specific One-Step Procedure for Easy Mutation Detection, Nucleic Acid Res., 1993, vol. 21, pp. 3623–3629.

    CAS  PubMed  Google Scholar 

  49. Gibbs, R.A., Nguyen, P.-N., and Caskeyl, C.T., Detection of Single DNA Base Differences by Competitive Oligonucleotide Priming, Nucleic Acid Res., 1989, vol. 17, pp. 2437–2448.

    CAS  PubMed  Google Scholar 

  50. Orou, A., Fechner, B., Utermann, G., et al., Allele-Specific Competitive Blocker PCR: A One-Step Method with Applicability to Pool Screening, Hum. Mutat., 1995, vol. 6, pp. 163–169.

    Article  CAS  PubMed  Google Scholar 

  51. McKinzie, P.B. and Parsons, B.L., Detection of Rare K-ras Codon 12 Mutations Using Allele-Specific Competitive Blocker PCR, Mutat. Res., 2002, vol. 517, pp. 209–220.

    CAS  PubMed  Google Scholar 

  52. Antony, T. and Subramaniam, V., Molecular Beacons: Nucleic Acid Hybridization and Emerging Applications, J. Biomol. Struct. Dyn., 2001, vol. 19, pp. 497–504.

    CAS  PubMed  Google Scholar 

  53. Fang, X., Mi, Y., Li, J.J., et al., Molecular Beacons: Fluorogenic Probes for Living Cell Study, Cell Biochem. Biophys., 2002, vol. 37, pp. 71–81.

    CAS  PubMed  Google Scholar 

  54. Broude, N.E., Stem-Loop Oligonucleotides: A Robust Tool for Molecular Biology and Biotechnology, Trends Biotechnol., 2002, vol. 20, pp. 249–256.

    CAS  PubMed  Google Scholar 

  55. Bon, M.A., van Oeveren-Dybicz, A., and van der Bergh, A., Genotyping of HLA-B27 by Real-Time PCR without Hybridization Probes, Clin. Chem., 2000, vol. 46, pp. 1000–1002.

    CAS  PubMed  Google Scholar 

  56. Hiratsuka, M., Agatsuma, Y., and Mizugaki, M., Rapid Detection of CYP2C9*3 Alleles by Real-Time Fluorescence PCR Based on SYBR Green, Mol. Genet. Metab., 1999, vol. 68, pp. 357–362.

    Article  CAS  PubMed  Google Scholar 

  57. Fujii, K., Matsubara, Y., Akanuma, J., et al., Mutation Detection by TaqMan-Allele Specific Amplification: Application to Molecular Diagnosis of Glycogen Storage Disease Type Ia and Medium-Chain Acyl-CoA Dehydrogenase Deficiency, Hum. Mutat., 2000, vol. 15, pp. 189–196.

    Article  CAS  PubMed  Google Scholar 

  58. Bengra, C., Mifflin, T.E., Khripin, Y., et al., Genotyping of Essential Hypertension Single-Nucleotide Polymorphisms by a Homogeneous PCR Method with Universal Energy Transfer Primers, Clin. Chem., 2002, vol. 48, pp. 2131–2140.

    CAS  PubMed  Google Scholar 

  59. Winn-Deen, E.S., Direct Fluorescence Detection of Allele-Specific PCR Products Using Novel Energy-Transfer Labeled Primers, Mol. Diagnosis, 1998, vol. 3, pp. 217–222.

    CAS  Google Scholar 

  60. Hawkins, J.R., Khripin, Y., Valdes, A.M., et al., Miniaturized Sealed-Tube Allele-Specific PCR, Hum. Mutat., 2002, vol. 19, pp. 543–553.

    Article  CAS  PubMed  Google Scholar 

  61. Nazarenko, I.A., Bhatnagar, S.K., and Hohman, R.J., A Closed Tube Format for Amplification and Detection of DNA Based on Energy Transfer, Nucleic Acids Res., 1997, vol. 25, pp. 2516–2521.

    Article  CAS  PubMed  Google Scholar 

  62. Fiandaca, M.J., Hyldig-Nielsen, J.J., Gildea, B.D., et al., Self-Reporting PNA/DNA Primers for PCR Analysis, Genome Res., 2001, vol. 11, pp. 609–613.

    Article  CAS  PubMed  Google Scholar 

  63. Bates, J.A. and Taylor, E.J.A., Scorpion ARMS Primers for SNP Real-Time PCR Detection and Quantification of Pyrenophora teres, Mol. Plant Pathol., 2001, vol. 2, pp. 275–280.

    CAS  Google Scholar 

  64. Thelwell, N., Millington, S., Solinas, A., et al., Mode of Action and Application of Scorpion Primers to Mutation Detection, Nucleic Acids Res., 2000, vol. 28, pp. 3752–3761.

    Article  CAS  PubMed  Google Scholar 

  65. Whitcombe, D., Theaker, J., Guy, S.P., et al., Detection of PCR Products Using Self-Probing Amplicons and Fluorescence, Nat. Biotechnol., 1999, vol. 17, pp. 804–807.

    Article  CAS  PubMed  Google Scholar 

  66. Solinas, A., Brown, L.J., McKeen, C., et al., Duplex Scorpion Primers in SNP Analysis and FRET Applications, Nucleic Acids Res., 2001, vol. 29, p. e96.

    Article  CAS  PubMed  Google Scholar 

  67. Kong, D.-M., Shen, H.-X., and Mi, H.-F., Detection of Hepatitis B Virus DNA by Duplex Scorpion Primer-Based PCR Assay, Chinese J. Chem., 2004, vol. 22, pp. 903–907.

    CAS  Google Scholar 

  68. Didenko, V.V., DNA Probes Using Fluorescence Resonance Energy Transfer (FRET): Designs and Applications, BioTechniques, 2001, vol. 31, pp. 1106–1116.

    CAS  PubMed  Google Scholar 

  69. Saiki, R.K., Walsh, P.S., Levenson, C.H., et al., Genetic Analysis of Amplified DNA with Immobilized Sequence-Specific Oligonucleotide Probes, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 6230–6234.

    CAS  PubMed  Google Scholar 

  70. Chu, B.C.F. and Orgel, L.E., Nonenzymatic Sequence-Specific Cleavage of Single-Stranded DNA, Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 963–967.

    CAS  PubMed  Google Scholar 

  71. Lee, L.G., Connell, C.R., and Bloch, W., Allelic Discrimination by Nick-Translation PCR with Fluorogenic Probes, Nucleic Acids Res., 1993, vol. 21, pp. 3761–3766.

    CAS  PubMed  Google Scholar 

  72. Livak, K.J., Flood, S.J., Marmaro, J., et al., Oligonucleotides with Fluorescent Dyes at Opposite Ends Provide a Quenched Probe System Useful for Detecting PCR Product and Nucleic Acid Hybridization, PCR Methods Appl., 1995, vol. 4, pp. 357–362.

    CAS  PubMed  Google Scholar 

  73. Salin, H., Vujasinovic, T., Mazurie, A., et al., A Novel Sensitive Microarray Approach for Differential Screening Using Probes Labeled with Two Different Radioelements, Nucleic Acids Res., 2002, vol. 30, p. e17.

    Article  CAS  PubMed  Google Scholar 

  74. Kempe, T., Sundquist, W.I., Chow, F., et al., Chemical and Enzymatic Biotin-Labeling of Oligodeoxyribonucleotides, Nucleic Acids Res., 1985, vol. 13, pp. 45–57.

    CAS  PubMed  Google Scholar 

  75. Latorra, D., Hopkins, D., Campbell, K., et al., Multiplex Allele-Specific PCR with Optimized Locked Nucleic Acid Primers, BioTechniques, 2003, vol. 34, pp. 1150–1152.

    CAS  PubMed  Google Scholar 

  76. Johnson, M.P., Haupt, L.M., and Griffiths, L.R., Locked Nucleic Acid (LNA) Single Nucleotide Polymorphism (SNP) Genotype Analysis and Validation Using Real-Time PCR, Nucleic Acids Res., 2004, vol. 32, p. e55.

    PubMed  Google Scholar 

  77. Mouritzen, P., Nielsen, A.T., Pfundheller, H.M., et al., Single Nucleotide Polymorphism Genotyping Using Locked Nucleic Acid (LNA), Expert Rev. Mol. Diagn., 2003, vol. 3, pp. 27–38.

    Article  CAS  PubMed  Google Scholar 

  78. Simeonov, A. and Nikiforov, T.T., Single Nucleotide Polymorphism Genotyping Using Short, Fluorescently Labeled Locked Nucleic Acid (LNA) Probes and Fluorescence Polarization Detection, Nucleic Acids Res., 2002, vol. 30, p. e91.

    Article  PubMed  Google Scholar 

  79. Kutyavin, I.V., Afonina, I.A., Mills, A., et al., 3′-Minor Groove Binder-DNA Probes Increase Sequence Specificity at PCR Extension Temperatures, Nucleic Acids Res., 2000, vol. 28, pp. 655–661.

    Article  CAS  PubMed  Google Scholar 

  80. Afonina, I.A., Sanders, S., Walburger, D., et al., A Comparison of Minor Groove Binder-Conjugated DNA Probes, PharmaGenomics, 2002, vol. 1, pp. 48–54.

    Google Scholar 

  81. Afonina, I., Zivarts, M., Kutyavin, I., et al., Efficient Priming of PCR with Short Oligonucleotides Conjugated to a Minor Groove Binder, Nucleic Acids Res., 1997, vol. 25, pp. 2657–2660.

    Article  CAS  PubMed  Google Scholar 

  82. Lukhtanov, E.A., Kutyavin, I.V., Gamper, H.B., et al., Oligodeoxyribonucleotides with Conjugated Dihydropyrroloindole Oligopeptides: Preparation and Hybridization Properties, Bioconjug. Chem., 1995, vol. 6, pp. 418–426.

    Article  CAS  PubMed  Google Scholar 

  83. Li, Q., Luan, G., Guo, Q., et al., A New Class of Homogeneous Nucleic Acid Probes Based on Specific Displacement Hybridization, Nucleic Acids Res, 2002, vol. 30, p. e5.

    PubMed  Google Scholar 

  84. Cheng, J., Zhang, Y., and Li, Q., Real-Time PCR Genotyping Using Displacing Probes, Nucleic Acids Res., 2004, vol. 32, p. e60.

    Article  Google Scholar 

  85. Livak, K.J., SNP Genotyping by the 5′-Nuclease Reaction, Methods Mol. Biol., 2003, vol. 212, pp. 129–147.

    CAS  PubMed  Google Scholar 

  86. Holland, P.M., Abramson, R.D., Watson, R., and Gelfond, D.H., Detection of Specific Polymerase Chain Reaction Product by Utilizing the 5′-3′Exonuclease Activity of Thermus aquaticus DNA Polymerase, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 7276–7280.

    CAS  PubMed  Google Scholar 

  87. Happich, D., Madlener, K., and Schwaab, R., Application of the TaqMan-PCR for Genotyping of the Prothrombin G20210A Mutation and of the Thermolabile Methylenetetrahydrofolate Reductase Mutation, Thromb. Haemost., 2000, vol. 84, pp. 144–145.

    CAS  PubMed  Google Scholar 

  88. Kostrikis, L.G., Tyagy, S., Mhlanga, M.M., et al., Spectral Genotyping of Human Alleles, Science, 1998, vol. 279, pp. 1228–1229.

    Article  CAS  PubMed  Google Scholar 

  89. Marras, S.A.E., Kramer, F.R., and Tyagi, S., Multiplex Detection of Single-Nucleotide Variations Using Molecular Beacons, Genetic Analysis: Biomolecular Engineering, 1999, vol. 14, pp. 151–156.

    Article  CAS  Google Scholar 

  90. Marras, S.A.E., Kramer, F.R., and Tyagi, S., Efficiencies of Fluorescence Resonance Energy Transfer and Contact-Mediated Quenching in Oligonucleotide Probes, Nucleic Acids Res., 2002, vol. 30, p. e122.

    Article  PubMed  Google Scholar 

  91. Ortiz, E., Estrada, G., and Lizardi, P.M., PNA Molecular Beacons for Rapid Detection of PCR Amplicons, Mol. Cell Probes, 1998, vol. 12, pp. 219–226.

    Article  CAS  PubMed  Google Scholar 

  92. Mullah, B. and Livak, K., Efficient Automated Synthesis of Molecular Beacons, Nucleos. Nucleot., 1999, vol. 18, pp. 1311–1312.

    CAS  Google Scholar 

  93. Bonnet, G., Tyagi, S., Libchaber, A., et al., Thermodynamic Basis of the Enhanced Specificity of Structured DNA Probes, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 6171–6176.

    CAS  PubMed  Google Scholar 

  94. Mhlanga, M.M. and Malmberg, L., Using Molecular Beacons to Detect Single-Nucleotide Polymorphisms with Real-Time PCR, Methods, 2001, vol. 25, pp. 463–471.

    Article  CAS  PubMed  Google Scholar 

  95. Marras, S.A., Kramer, F.R., and Tyagi, S., Genotyping SNPs with Molecular Beacons, Methods Mol. Biol., 2003, vol. 212, pp. 111–128.

    CAS  PubMed  Google Scholar 

  96. Tsourkas, A., Behlkel, M.A., Rose, S.D., et al., Hybridization Kinetics and Thermodynamics of Molecular Beacons, Nucleic Acids Res., 2003, vol. 31, pp. 1319–1330.

    Article  CAS  PubMed  Google Scholar 

  97. Tyagi, S. and Kramer, F.R., Molecular Beacons: Probes That Fluoresce upon Hybridization, Nat. Biotechnol., 1996, vol. 14, pp. 303–308.

    CAS  PubMed  Google Scholar 

  98. Tyagi, S., Bratu, D.P., and Kramer, F.R., Multicolor Molecular Beacons for Allele Discrimination, Nat. Biotechnol., 1998, vol. 16, pp. 49–53.

    Article  CAS  PubMed  Google Scholar 

  99. Tyagi, S., Marras, S.A.E., and Kramer, F.R., Wave-length-Shifting Molecular Beacons, Nat. Biotechnol., 2000, vol. 18, pp. 1191–1196.

    CAS  PubMed  Google Scholar 

  100. Pont-Kingdon, G. and Lyon, E., Direct Molecular Haplotyping by Melting Curve Analysis of Hybridization Probes: β2-Adrenergic Receptor Haplotypes As an Example, Nucleic Acids Res., 2005, vol. 33, p. e89.

    Article  PubMed  Google Scholar 

  101. Bernard, P.S., Lay, M.J., and Wittwer, C.T., Integrated Amplification and Detection of the C677T Point Mutation in the Methylenetetrahydrofolate Reductase Gene by Fluorescence Resonance Energy Transfer and Probe Melting Curves, Anal. Biochem., 1998, vol. 255, pp. 101–107.

    Article  CAS  PubMed  Google Scholar 

  102. Aslanidis, C., Nauck, M., and Schmitz, G., High-Speed Prothrombin G-A 20210 and Methylenetetrahydrofolate Reductase C-T 677 Mutation Detection Using Real-Time Fluorescence PCR and Melting Curves, Bio-Techniques, 1999, vol. 27, pp. 234–238.

    CAS  Google Scholar 

  103. Von Ahsen, N., Oellerich, M., and Schutz, E., A Method for Homogeneous Color-Compensated Genotyping of Factor V (G1691A) and Methylenetetrahydrofolate Reductase (C677T) Mutations Using Real-Time Multiplex Fluorescence PCR, Clin. Biochem., 2000, vol. 33, pp. 535–539.

    Google Scholar 

  104. Lay, M.J. and Wittwer, C.T., Real-Time Fluorescence Genotyping of Factor V Leiden during Rapid-Cycle PCR, Clin. Chem., 1997, vol. 43, pp. 2262–2267.

    CAS  PubMed  Google Scholar 

  105. Lyon, E., Mutation Detection Using Fluorescent Hybridization Probes and Melting Curve Analysis, Exp. Rev. Mol. Diagn., 2001, vol. 1, pp. 92–101.

    CAS  Google Scholar 

  106. Koch, W.H., Technology Platforms for Pharmacogenomic Diagnostic Assays, Nat. Rev. Drug Discov., 2004, vol. 3, pp. 749–761.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © IA. Kofiadi, D.V. Rebrikov, 2006, published in Genetika, 2006, Vol. 42, No. 1, pp. 22–32.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kofiadi, I.A., Rebrikov, D.V. Methods for detecting single nucleotide polymorphisms: Allele-specific PCR and hybridization with oligonucleotide probe. Russ J Genet 42, 16–26 (2006). https://doi.org/10.1134/S1022795406010029

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406010029

Keywords

Navigation