Skip to main content
Log in

Age and Adaptive Changes in Pro-/Antioxidant Metabolism Indicators and Respiration of the Winter-Green Herbaceous Plant Ajuga reptans L. Leaves in Natural Conditions of the Taiga Zone

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Ontogenetic development and environmental conditions are the main factors determining the life activity of plants. The activity of antioxidant enzymes and respiratory pathways in the rosette leaves of the summer-winter-green herbaceous perennial Ajuga reptans L. (common bugle) was studied in connection with age and overwintering. The leaves formed in May–June overwintered and functioned again until a new generation of leaves appeared. The content of lipid peroxidation products and hydrogen peroxide in the leaves of overwintered plants was significantly higher than the content before overwintering. The activity of antioxidant enzymes changed in different directions. An increased level of activity of ascorbate peroxidase (APX) was noted immediately after plants emerged from the snow, the catalase (CAT) activity increased before and during overwintering, and the superoxide dismutase (SOD) activity increased before, during, and immediately after overwintering. Mn-SOD, Fe-SOD, and three Cu/Zn-SOD isoforms, two APX isoforms, and one CAT isoform were identified on native gels. The respiration rate, measured at 20°C, was maximum in young growing leaves and decreased by three to four times towards the end of the life cycle. The ratio of the cytochrome and alternative respiratory pathways capacity varied from three to one or lower. The coefficient of energy efficiency of respiration (YATP/glucose, the number of moles of ATP formed during the oxidation of 1 mole of glucose in respiration) varied from 17 to 25, decreasing during the overwintering period and at the final stages of ontogenesis. The results of principal component analysis indicate the relationship between the studied parameters and the involvement of regular changes in pro-/antioxidant metabolism and respiration in the process of adaptation of plants overwintering with green leaves. Taken together, the obtained data complement and deepen the understanding of the physiological mechanisms that contribute to overwintering and preservation of the photosynthetic apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Dymova, O., Khristin, M., Miszalski, Z., Kornas, A., Strzalka, K., and Golovko, T., Seasonal variations of leaf chlorophyll–protein complexes in the wintergreen herbaceous plant Ajuga reptans L., Funct. Plant Biol., 2018, vol. 45, p. 519. https://doi.org/10.1071/FP17199

    Article  CAS  PubMed  Google Scholar 

  2. Dymova, O.V., Zakhozhiy, I.G., and Golovko, T.K., Age and adaptive changes in the photosynthetic apparatus of leaves in winter green herbaceous plant Ajuga reptans L. in the natural conditions of the taiga zone, Russ. J. Plant Physiol., 2023, vol. 70, p. 114. https://doi.org/10.1134/S1021443723601325

    Article  CAS  Google Scholar 

  3. Mittler, R., Zandalinas, S.I., Fichman, Y., and Van Breusegem, F., Reactive oxygen species signalling in plant stress responses, Nat. Rev. Mol. Cell Biol., 2022, vol. 23, p. 663. https://doi.org/10.1038/s41580-022-00499-2

    Article  CAS  PubMed  Google Scholar 

  4. Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M., and Hasanuzzaman, M., Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms, Antioxidants, 2021, vol. 10, p. 277. https://doi.org/10.3390/antiox10020277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hasanuzzaman, M., Bhuyan, M.H.M.B., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A., Fujita, M., and Fotopoulos, V., Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator, Antioxidants, 2020, vol. 9, p. 681. https://doi.org/10.3390/antiox9080681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Golovko, T.K. and Garmash, E.V., Plant respiration: Classical and current notions, Russ. J. Plant Physiol., 2022, vol. 69, p. 108. https://doi.org/10.1134/S1021443722060073

    Article  CAS  Google Scholar 

  7. Vishwakarma, A., Tetali, S., Selinski, J., Scheibe, R., and Padmasree, K., Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana, Ann. Bot., 2015, vol. 116, p. 555. https://doi.org/10.1093/aob/mcv122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Aken, O., Mitochondrial redox systems as central hubs in plant metabolism and signalling, Plant Physiol., 2021, vol. 186, p. 36. https://doi.org/10.1093/plphys/kiab101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garmash, E.V., Suppression of mitochondrial alternative oxidase can result in upregulation of the ROS scavenging network: Some possible mechanisms underlying the compensation effect, Plant Biol., 2022, vol. 25, p. 43. https://doi.org/10.1111/plb.13477

    Article  CAS  PubMed  Google Scholar 

  10. Garmash, E.V., Mitochondrial respiration of the photosynthesizing cell, Russ. J. Plant Physiol., 2016, vol. 63, p. 13. https://doi.org/10.1134/S1021443715060072

    Article  CAS  Google Scholar 

  11. Vanlerberghe, G.C., Dahal, K., Alber, N.A., and Chadee, A., Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase, Mitochondrion, 2020, vol. 52, p. 197. https://doi.org/10.1016/j.mito.2020.04.001

    Article  CAS  PubMed  Google Scholar 

  12. Amthor, J.S., The McCree–de Wit–Penning de Vries–Thornley respiration paradigms: 30 years later, Ann. Bot., 2000, vol. 86, p. 1. https://doi.org/10.1006/anbo.2000.1175

    Article  CAS  Google Scholar 

  13. McDonald, A.E. and Vanlerberghe, G.C., Origins, evolutionary history, and taxonomic distribution of alternative oxidase and plastoquinol terminal oxidase, Comp. Biochem. Physiol. Part D. Genomics Proteomics, 2006, vol. 1, p. 357. https://doi.org/10.1016/j.cbd.2006.08.001

    Article  CAS  PubMed  Google Scholar 

  14. Dymova, O.V. and Golovko, T.K., Morphophysiological aspects of vegetative propagation of Ajuga reptans L, in Reproduktivnaya biologiya rastenii (Plant Reproductive Biology), Syktyvkar: Komi Nauch. Tsentr UB RAS, 1998, p. 72.

  15. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, p. 189. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  16. Vetoshkina, D.V., Pozdnyakova-Filatova, I.Yu., Zhurikova, E.M., Frolova, A.A., Naydov, I.A., Ivanov, B.N., and Borisova-Mubarakshina, M.M., The increase in adaptive capacity to high illumination of barley plants colonized by rhizobacteria P. putida BS3701, Appl. Biochem. Microbiol., 2019, vol. 55, p.173. https://doi.org/10.1134/S0003683819020133

    Article  CAS  Google Scholar 

  17. Malyshev, R.V. and Silina, E.V., Luminometer: Principle of operation, device, and recommendations for assembly, Instrum. Exp. Tech., 2023, vol. 66, p. 476.

    Article  Google Scholar 

  18. Beauchamp, C. and Fridovich, I., Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, p. 276. https://doi.org/10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  19. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, p. 867. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  20. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, p. 121. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  21. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, p. 248. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  22. Miszalski, Z., Slesak, I., Niewiadomska, E., Baczek-Kwinta, R., Luttge, U., and Ratajczak, R., Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L., Plant Cell Environ., 1998, vol. 21, p. 169. https://doi.org/10.1046/j.1365-3040.1998.00266.x

    Article  CAS  Google Scholar 

  23. Mittler, R. and Zilinskas, B.A., Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium, Anal. Biochem., 1993, vol. 212, p. 540. https://doi.org/10.1006/abio.1993.1366

    Article  CAS  PubMed  Google Scholar 

  24. Pezzoni, M., Pizarro, R.A., and Costa, C.S., Detection of catalase activity by polyacrylamide gel electrophoresis (PAGE) in cell extracts from Pseudomonas aeruginosa, Bio-protoc., 2018, vol. 8, p. e2869. https://doi.org/10.21769/BioProtoc.2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ding, Y., Wang, X.-T., Wang, F., Shao, Y.-L., Zhang, A.-M., and Chang, W., The effects of chilling stress on antioxidant enzymes activities and proline, malondialdehyde, soluble sugar contents in three Paphiopedilum species, Russ. J. Plant Physiol., 2023, vol. 70, p. 61. https://doi.org/10.1134/S1021443722603184

    Article  CAS  Google Scholar 

  26. Lee, D.H. and Lee, C.B., Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: In gel enzyme activity assays, Plant Sci., 2000, vol. 159, p. 75. https://doi.org/10.1016/S0168-9452(00)00326-5

    Article  CAS  PubMed  Google Scholar 

  27. Gill, S.S., Anjum, N.A., Gill, R., Yadav, S., Hasanuzzaman, M., Fujita, M., Mishra, P., Sabat, S.C., and Tuteja, N., Superoxide dismutase ‒ mentor of abiotic stress tolerance in crop plants, Environ. Sci. Pollut. Res., 2015, vol. 22, p. 10375. https://doi.org/10.1007/s11356-015-4532-5

    Article  CAS  Google Scholar 

  28. Santa-Cruz, D.M., Pacienza, N.A., Zilli, C.G., Tomaro, M.L., Balestrasse, K.B., and Yannarelli, G.G., Nitric oxide induces specific isoforms of antioxidant enzymes in soybean leaves subjected to enhanced ultraviolet-B radiation, J. Photochem. Photobiol. B, Biol., 2014, vol. 141, p. 202. https://doi.org/10.1016/j.jphotobiol.2014.09.019

    Article  CAS  Google Scholar 

  29. Anjum, N.A., Sharma, P., Gill, S.S., Hasanuzzaman, M., Khan, E.A., Kachhap, K., Mohamed, A.A., Thangavel, P., Devi, G.D., Vasudhevan, P., Sofo, A., Khan, N.A., Misra, A.N., Lukatkin, A.S., Singh, H.P., et al., Catalase and ascorbate peroxidase—representative H2O2-detoxifying heme enzymes in plants, Environ. Sci. Pollut. Res., 2016, vol. 23, p. 19002. https://doi.org/10.1007/s11356-016-7309-6

    Article  CAS  Google Scholar 

  30. Golovko, T.K., Dykhanie Rastenii (fiziologicheskie aspekty) (Plant Respiration (Physiological Aspects)), St. Petersburg: Nauka, 1999.

  31. Florez-Sarasa, I.D., Bouma, T.J., Medrano, H., Azcon-Bieto, J., and Ribas-Carbo, M., Contribution of the cytochrome and alternative pathways to growth respiration and maintenance respiration in Arabidopsis thaliana, Physiol. Plantarum, 2007, vol. 129, p. 143. https://doi.org/10.1111/j.1399-3054.2006.00796.x

    Article  CAS  Google Scholar 

  32. Ivanova, T.I., Kirpichnikova, O.V., Sherstneva, O.A., and Yudina, O.S., Annual cycle of respiration in the leaves of evergreen plants, Russ. J. Plant Physiol., 1998, vol. 45, p. 906.

    Google Scholar 

  33. Golovko, T.K. and Pystina, N.V., The alternative respiration pathway in leaves of Rhodiola rosea and Ajuga reptans: Presumable physiological role, Russ. J. Plant Physiol., 2001, vol. 48, p. 733. https://doi.org/10.1023/A:1012596122292

    Article  CAS  Google Scholar 

  34. Millenaar, F.F. and Lambers, H., The alternative oxidase: In vivo regulation and function, Plant Biol., 2003, vol. 5, p. 2. https://doi.org/10.1055/s-2003-37974

    Article  CAS  Google Scholar 

  35. Grabelnych, O.I., Borovik, O.A., Tauson, E.L., Pobezhimova, T.P., Katyshev, A.I., Pavlovskaya, N.S., Koroleva, N.A., Lyubushkina, I.V., Borovskii, G.B., Voinikov, V.K., Bashmakov, V.Yu., and Popov, V.N., Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external nadh dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings, Biochemistry (Moscow), 2014, vol. 79, p. 506. https://doi.org/10.1134/S0006297914060030

    Article  CAS  PubMed  Google Scholar 

  36. Seydel, C., Kitashova, A., Fürtauer, L., and Nägele, T., Temperature-induced dynamics of plant carbohydrate metabolism, Physiol. Plant, 2022, vol. 174, p. 13602. https://doi.org/10.1111/ppl.13602

    Article  CAS  Google Scholar 

  37. Plaxton, W.C. and Podestá, F.E., The functional organization and control of plant respiration, Crit. Rev. Plant Sci., 2006, vol. 25, p. 159. https://doi.org/10.1080/07352680600563876

    Article  CAS  Google Scholar 

  38. Li, L., Nelson, C.J., Trösch, J., Castleden, I., Huang, S., and Millar, A.H., Protein degradation rate in Arabidopsis thaliana leaf growth and development, Plant Cell, 2017, vol. 29, p. 207. https://doi.org/10.1105/tpc.16.00768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shugaeva, N.A., Vyskrebentseva, E.I., Orekhova, S.O., and Shugaev, A.G., Effect of water deficit on respiration of conducting bundles in leaf petioles of sugar beet, Russ. J. Plant Physiol., 2007, vol. 54, p. 329. https://doi.org/10.1134/S1021443707030065

    Article  CAS  Google Scholar 

  40. Shelyakin, M.A., Zakhozhiy, I.G., and Golovko, T.K., Ontogenetic aspects of plant respiration (by the example of Rubus chamaemorus L.), Russ. J. Plant Physiol., 2016, vol. 63, p. 92. https://doi.org/10.1134/S1021443716010167

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. O.V. Dymova for assistance in sample selection and useful comments.

Funding

The work was carried out within the framework of the topic of State Budget Research, Development and Technological Work “Photosynthesis, Respiration, and Bioenergetics of Plants and Phototrophic Organisms (Physiological-Biochemical, Molecular-Genetic, and Ecological Aspects)” (reg. no. 122040600021-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shelyakin.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by M. Shulskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: AOX—alternative oxidase; AP—alternative respiratory pathway; PSA—photosynthetic apparatus; CP—cytochrome respiratory pathway; EER—energetic efficiency of respiration; APX—ascorbate peroxidase; CAT—catalase; SOD—superoxide dismutase; TBARS—thiobarbituric acid reactive substances.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelyakin, M.A., Silina, E.V. & Golovko, T.K. Age and Adaptive Changes in Pro-/Antioxidant Metabolism Indicators and Respiration of the Winter-Green Herbaceous Plant Ajuga reptans L. Leaves in Natural Conditions of the Taiga Zone. Russ J Plant Physiol 71, 31 (2024). https://doi.org/10.1134/S1021443724604397

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443724604397

Keywords:

Navigation