Skip to main content
Log in

Application of Bromocresol Green for Spectrophotometric Determination of Alkaloid Content Using the Example of Ruta graveolens

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Studies were carried out to select conditions for the spectrophotometric determination of total alkaloid content using bromocresol green (BCG): buffer pH, formation time of the BCG-alkaloid ion pair, and stability time of the BCG-alkaloid ion pair. It is shown that the method is applicable for tropane, isoquinoline, indole, and pyridine alkaloids. The method was used for rapid assessment of alkaloid content in the biomass of Ruta graveolens L. regenerated plants and in the pharmaceutical preparation Ruta graveolens herb. Using a minimum volume of dry plant material (20 mg), it was determined that the content of alkaloids in regenerated plants was 10.55 mg/g dry weight, which is 1.62 times less than in pharmaceutical drug samples. Using reverse-phase HPLC, 16 compounds of varying intensity were identified in purified alkaloid fractions, six of which were common to regenerating plants and to the pharmaceutical preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Thomis, G. N. and Kotionis, A. Z., Les indicateurs acides comme réactifs sensibles des alcaloïdes, Anal. Chim. Acta, 1957, vol. 16, p. 201. https://doi.org/10.1016/S0003-2670(00)89913-4

    Article  CAS  Google Scholar 

  2. Maghssoudi, R.H. and Fawzi, A.B., Direct spectrophotometric determination of thebaine in Arya II population capsules of Papaver bracteatum Lindi, J. Pharm. Sci. (Philadelphia, PA, U. S.), 1978, vol. 67, p. 32. https://doi.org/10.1002/jps.2600670109

    Article  CAS  Google Scholar 

  3. Li, L., Long, W., Wan, X., Ding, Q., Zhang, F., and Wan, D., Studies on quantitative determination of total alkaloids and berberine in five origins of crude medicine “Sankezhen”, J. Chromatogr. Sci., 2015, vol. 53, p. 307. https://doi.org/10.1093/chromsci/bmu060

    Article  CAS  PubMed  Google Scholar 

  4. Liu, Y. and Liu, C., Determination of total alkaloids in different parts of Actinidia arguta by spectrophotography, Proc. International Conference on Materials, Environmental and Biological Engineering, Guilin, 2015, p. 127. https://doi.org/10.2991/mebe-15.2015.31

  5. Patel, R.K., Patel, J.B., and Trivedi, P.D., Spectrophotometric method for the estimation of total alkaloids in the Tinospora cordifolia M. and its herbal formulations, Int. J. Pharm. Pharm. Sci., 2015, vol. 7, p. 249.

    CAS  Google Scholar 

  6. Shamsa, F., Monsef, H. R., Ghamooshi, R., Verdian, R.M.R., Spectrophotometric determination of total alkaloids in Peganum harmala L. using bromocresol green, Res. J. Phytochem., 2007, vol. 1, p. 79.

    Article  Google Scholar 

  7. Szewczyk, A., Marino, A., Molinari, J., Ekiert, H., and Miceli, N., Phytochemical characterization, and antioxidant and antimicrobial properties of agitated cultures of three Rue species: Ruta chalepensis, Ruta corsica, and Ruta graveolens, Antioxidants, 2022, vol. 11, p. 592. https://doi.org/10.3390/antiox11030592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kamal, L.Z.M., Adam, M.A.A., Shahpudin, S.N. Mohd., Shuib, A.N., Sandai, R., Hassan, N.M., Tabana, Y., Basri, D.F., Than, L.T.L., and Sandai, D., Identification of alkaloid compounds arborinine and graveoline from Ruta angustifolia (L.) Pers for their antifungal potential against isocitrate lyase (ICL1) gene of Candida albicans, Mycopathologia, 2021, vol. 186, p. 221. https://doi.org/10.1007/s11046-020-00523-z

    Article  CAS  PubMed  Google Scholar 

  9. Wolters, B. and Eilert, U., Antimicrobial substances in callus cultures of Ruta graveolens, Planta Med., 1981, vol. 43, p. 166. https://doi.org/10.1055/s-2007-971494

    Article  CAS  PubMed  Google Scholar 

  10. Adamska-Szewczyk, A., Glowniak, K., and Baj, T., Furochinoline alkaloids in plants from Rutaceae family—a review, Curr. Issues Pharm. Med. Sci., 2016, vol. 29, p. 33. https://doi.org/10.1515/cipms-2016-0008

    Article  CAS  Google Scholar 

  11. Kaur, R. and Kumar, K., Synthetic and medicinal perspective of quinolines as antiviral agents, Eur. J. Med. Chem., 2021, vol. 215, p. 113220. https://doi.org/10.1016/j.ejmech.2021.113220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghosh, S., Bishayee, K., and Khuda-Bukhsh, A.R., Graveoline isolated from ethanolic extract of Ruta graveolens triggers apoptosis and autophagy in skin melanoma cells: A novel apoptosis-independent autophagic signaling pathway: Graveoline induces apoptosis and autophagy in A375 cells, Phytother. Res., 2014, vol. 28, p. 1153. https://doi.org/10.1002/ptr.5107

    Article  CAS  PubMed  Google Scholar 

  13. Yadav, T. T., Murahari, M., Peters, G. J., and Yc, M., A comprehensive review on acridone based derivatives as future anti-cancer agents and their structure activity relationships, Eur. J. Med. Chem., 2022, vol. 239, p. 114527. https://doi.org/10.1016/j.ejmech.2022.114527

    Article  CAS  PubMed  Google Scholar 

  14. Misawa, M., Plant Issue Culture: An Alternative for Production of Useful Metabolites, Rome: FAO, 1994.

    Google Scholar 

  15. Murashige, T. and Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant, 1962, vol. 15, p. 473. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  16. Wagner, H. and Bladt, S., Plant Drug Analysis: A Thin Layer Chromatography Atlas, Berlin; New York: Springer, 1996, 2nd ed.

    Book  Google Scholar 

  17. Orlita, A., Sidwa-Gorycka, M., Kumirska, J., Malinski, E., Siedlecka, E.M., Gajdus, J., Lojkowska, E., and Stepnowski, P., Identification of Ruta graveolens L. metabolites accumulated in the presence of abiotic elicitors, Biotechnol. Prog., 2008, vol. 24, p. 128.

    Article  CAS  PubMed  Google Scholar 

  18. Diamond, D., Lau, K. T., Brady, S., and Cleary, J., Integration of analytical measurements and wireless communications—Current issues and future strategies, Talanta, 2008, vol. 75, p. 606. https://doi.org/10.1016/j.talanta.2007.11.022

    Article  CAS  PubMed  Google Scholar 

  19. Saad, B., Ion-association method for the spectrophotometric determination of the antitussive drug noscapine, Talanta, 1997, vol. 44, p. 53. https://doi.org/10.1016/S0039-9140(96)02009-7

    Article  CAS  PubMed  Google Scholar 

  20. Zhu, S.-C., Shi, M.-Z., Yu, Y.-L., Jiao, Y.-H., Zheng, H., Liu, F.-M., and Cao, J., In-situ formation of ion pair assisted liquid-liquid microextraction of natural alkaloids by response surface methodology, Microchem. J., 2021, vol. 171, p. 106813. https://doi.org/10.1016/j.microc.2021.106813

    Article  CAS  Google Scholar 

  21. Gainza, A.H., Reaction of halogenated hydrocarbon solvents with tertiary amines: Spectrophotometric and conductimetric study, Int. J. Chem. Kinet., 2004, vol. 36, p. 500. https://doi.org/10.1002/kin.20022

    Article  CAS  Google Scholar 

  22. Shamsa, F., Monsef, H. R., Ghamooshi, R., and Verdian-rizi, R., Spectrophotometric determination of total alkaloids in some Iranian medicinal plants, Thai J. Pharm. Sci., 2008, vol. 32, p. 17.

    CAS  Google Scholar 

  23. Gaínza, A.H., Associations of ajmaline and homatropine with bromocresol green and bromophenol blue in dichloromethane: Thermodynamic and kinetic parameters, Can. J. Chem., 1987, vol. 65, p. 1279. https://doi.org/10.1139/v87-215

    Article  Google Scholar 

  24. Sakai, T., Ohno, N., Sasaki, H., Hyuga, T., Extraction-spectrophotometric determination of berberine in crude drugs by the formation of a new ion associate, Anal. Sci., 1991, vol. 7, p. 39. https://doi.org/10.2116/analsci.7.39

    Article  CAS  Google Scholar 

  25. Baumert, A., Maier, W., Schumann, B., and Gröger, D., Increased accumulation of acridone alkaloids by cell suspension cultures of Ruta graveolens in response to elicitors, J. Plant Physiol., 1991, vol. 139, p. 224. https://doi.org/10.1016/S0176-1617(11)80612-7

    Article  CAS  Google Scholar 

  26. Eilert, U., Acridones (Ruta Alkaloids), Phytochemicals in Plant Cell Cultures, Friedrich, L. and Vasil, I.K., Eds., Amsterdam: Elsevier. 1988, p. 419. https://doi.org/10.1016/B978-0-12-715005-5.50031-5

    Book  Google Scholar 

  27. Kuzovkina, I.N., Specific accumulation and revised structures of acridone alkaloid glucosides in the tips of transformed roots of Ruta graveolens, Phytochemistry, 2004, vol. 65, p. 1095. https://doi.org/10.1016/j.phytochem.2004.03.003

    Article  CAS  PubMed  Google Scholar 

  28. Kuzovkina, I.N., Chernysheva, T.P., and Alterman, I.E., Characteristics of a strain of callus tissue of Ruta aromatica producing rutacridone, Russ. J. Plant Physiol., 1979, vol. 26, p. 492.

    CAS  Google Scholar 

  29. Ramawat, K.G., Rideau, M., and Chenieux, J.-C., Growth and quaternary alkaloid production in differentiating and non-differentiating strains of Ruta graveolens, Phytochemistry, 1985, vol. 24, p. 441. https://doi.org/10.1016/S0031-9422(00)80743-8

    Article  CAS  Google Scholar 

  30. Zhang, N., Wang, M., Li, Y., Zhou, M., Wu, T., and Cheng, Z., TLC–MS identification of alkaloids in Leonuri herba and Leonuri fructus aided by a newly developed universal derivatisation reagent optimised by the response surface method: 3, Phytochem. Anal., 2021, vol. 32, p. 242. https://doi.org/10.1002/pca.2970

    Article  CAS  PubMed  Google Scholar 

  31. Kuzovkina, I.N., Senderei, K., Rosa, S., Raisch, I., Composition of alkaloids in isolated roots, callus tissues and cell suspensions of Ruta graveolens L., Rast. Res., 1980, vol. 16, p. 112.

    CAS  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of state assignments carried out by the Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences (state registration no. 122011800137-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Valieva.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: BCG—bromocresol green; ultrasound—U/S.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valieva, A.I., Akulov, A.N. Application of Bromocresol Green for Spectrophotometric Determination of Alkaloid Content Using the Example of Ruta graveolens. Russ J Plant Physiol 71, 33 (2024). https://doi.org/10.1134/S1021443724604336

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443724604336

Keywords:

Navigation