Skip to main content
Log in

The Ratio of Red to Far-Red Light Affects Growth, Pigment Content, and Photosynthetic Rates in Cress Plants

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Far-red light is electromagnetic radiation with wavelengths of 700–800 nm. Light of such wavelengths does not fall into the range of photosynthetically active radiation (PAR) but plays an informational role in plants and indirectly influences the photosynthetic rate. In this study, garden cress (Lepidium sativum L.) was grown under illumination with different red to far-red light ratios (RL/FRL) in the overall lighting spectrum. The treatments with RL/FRL ratios of 1.1, 0.8, and 0.5 were applied. Effects of RL/FRL ratio on plant height, the content of chlorophylls and carotenoids, and photosynthesis were examined. The decrease in RL/FRL ratio in grow light led to elongation of cress plants and reduced the content of photosynthetic pigments. Lighting with ratios RL/FRL = 0.8 and RL/FRL = 0.5 did not reduce the photosynthetic capacity (on the 14th day of the experiment), which can be regarded as a positive effect. Lighting with a ratio RL/FRL = 1.1 was accompanied by the reduction of photosynthesis, which was probably due to a significant decrease in the content of chlorophylls and carotenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Park, Y. and Runkle, E.S., Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation, Environ. Exp. Bot., 2017, vol. 136, p. 41. https://doi.org/10.1016/j.envexpbot.2016.12.013

    Article  CAS  Google Scholar 

  2. Casal, J.J., Photoreceptor signaling networks in plant responses to shade, Annu. Rev. Plant Biol., 2013, vol. 64, p. 403. https://doi.org/10.1146/annurev-arplant-050312-120221

    Article  CAS  PubMed  Google Scholar 

  3. Ballaré, C.L., Sánchez, R.A., Scopel, A.L., Casal, J J., and Ghersa, C.M., Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight, Plant Cell Environ., 1987, vol. 10, p. 551.

    Article  Google Scholar 

  4. Voitsekhovskaya, O.V., Phytochromes and other (photo)receptors of information in plants, Russ. J. Plant Physiol., 2019, vol. 66, p. 163. https://doi.org/10.1134/S0015330319030151

    Article  Google Scholar 

  5. Gommers, C.M., Visser, E.J., St Onge, K.R., Voesenek, L.A., and Pierik, R., Shade tolerance: When growing tall is not an option, Trends Plant Sci., 2013, vol. 18, p. 6. https://doi.org/10.1016/j.tplants.2012.09.008

    Article  CAS  Google Scholar 

  6. Smith, H., Phytochromes and light signal perception by plants-an emerging synthesis, Nature, 2000, vol. 407, p. 585.

    Article  CAS  PubMed  Google Scholar 

  7. Emerson, R., Chalmers, R., and Cederstrand, C., Some factors influencing the long-wave limit of photosynthesis, Proc. Natl. Acad. Sci. USA, 1957, vol. 43, p. 133. https://doi.org/10.1073/pnas.43.1.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shibuya, T., Endo, R., Yuba, T., and Kitaya, Y., The photosynthetic parameters of cucumber as affected by irradiances with different red:far-red ratios, Biol. Plant, 2015, vol. 59, p. 198.

    Article  CAS  Google Scholar 

  9. Lee, M.J., Park, S.Y., and Oh, M.M., Growth and cell division of lettuce plants under various ratios of red to far-red light-emitting diodes, Hortic., Environ. Biotechnol., 2015, vol. 56, p. 186.

    Article  CAS  Google Scholar 

  10. Kalashnikova, E.A., Kirakosyan, R.N., Desyaterik, A.A., Ganaeva, D.R., Abubakarov, Kh.G., and Sleptsov, N.N., The role of light mode in regulation production process of plants in an intensive in vitro cultivation system, Est. Tekhn. nauki, 2021, vol. 5 (156), p. 64.

  11. Bulychev, A.A., Osipov, V.A., Matorin, D.N., and Vredenberg, W.J., Effects of farred light on fluores cence induction in infiltrated pea leaves under dimin ished ΔpH and Δϕ components of the proton motive force, J. Bioenerg. Biomembr., 2013, vol. 45, p. 37. https://doi.org/10.1007/s10863-012-9476-6

    Article  CAS  PubMed  Google Scholar 

  12. Tan, T., Li, S., Fan, Y., Wang, Z., Ali Raza, M., Shafiq, I., Wang, B., Wu, X., Yong, T., Wang, X., Wu, Y., Yang, F., and Yang, W., Far-red light: A regulator of plant morphology and photosynthetic capacity, The Crop J., 2022, vol. 10(2), p. 300. https://doi.org/10.1016/j.cj.2021.06.007

    Article  Google Scholar 

  13. Kasperbauer, M.J. and Peaslee, D.E., Morphology and photosynthetic efficiency of tobacco leaves that received end-of-day red and far red light during development, Plant Physiol., 1973, vol. 52, p. 440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalaitzoglou, P., Ieperen, W., Harbinson, J., van der Meer, M., Martinakos, S., Weerheim, K., Nicole, C.C.S., and Marcelis, L.F.M., Effects of continuous or end-of-day far-red light on tomato plant growth, morphology, light absorption, and fruit production, Front. Plant Sci., 2019, vol. 10, p. 322. https://doi.org/10.3389/fpls.2019.00322

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hitz, T., Hartung, J., Graeff-Hoenninger, S., and Munz, S., Morphological response of soybean (Glycine max (L.) Merr.) cultivars to light intensity and red to far-red ratio, Agronomy, 2019, vol. 9, p. 428. https://doi.org/10.3390/agronomy9080428

    Article  CAS  Google Scholar 

  16. Kurepin, L.V., Walton, L.J., Reid, D.M., Pharis, R.P., and Chinnappa, C.C., Growth and ethylene evolution by shade and sun ecotypes of Stellaria longipes in response to varied light quality and irradiance, Plant, Cell Environ., 2006, vol. 29, p. 647. https://doi.org/10.1111/j.1365-3040.2005.01443.x

    Article  CAS  PubMed  Google Scholar 

  17. Shibuya, T., Endo, R., Kitamura, Y., Kitaya, Y., and Hayashi, N., Potential photosynthetic advantages of cucumber (Cucumis sativus L.) seedlings grown under fluorescent lamps with high red:far-red light, HortSci., 2010, vol. 45, p. 553. https://doi.org/10.21273/HORTSCI.45.4.553

    Article  Google Scholar 

  18. Karlsson, P.E., Phytochrome is not involved in the red-light-enhancement of the stomatal blue-light-response in wheat seedlings, Physiol. Plant, 1988, vol. 74, p. 544. https://doi.org/10.1111/j.1399-3054.1988.tb02016.x

    Article  CAS  Google Scholar 

  19. Zou, J., Zhang, Y.T., Zhang, Y.Q., Bian, Z.H., Fanourakis, D., Yang, Q.C., and Li, T., Morphological and physiological properties of indoor cultivated lettuce in response to additional far-red light, Sci. Hortic., 2019, vol. 257, p. 108725. https://doi.org/10.1016/j.scienta.2019.108725

    Article  CAS  Google Scholar 

  20. Yang, Z.Q., Zhang, J.B., Li, Y.X., Peng, X.D., Zhang, T.H., and Zhang, J., Effects of red/far red ratio on morphological index, leaf area and dry matter partitioning of cut chrysanthemum flower, Acta Ecol. Sinica, 2012, vol. 32, p. 2498. https://doi.org/10.5846/stxb201110151529

    Article  Google Scholar 

  21. Chang, N., Gao, Y.F., Zhao, L., Liu, X.M., and Gao, H.B., Arabidopsis FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel, Sci. Rep., 2015, vol. 5, p. 9612. https://doi.org/10.1038/srep09612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lenbaum, V.V., Bulychev, A.A., and Matorin, D.N., Effect of far-red light on inductive changes in fast and slow fluorescence and the redox state of p700 in Scenedesmus quadricauda, Russ. J. Plant Physiol., 2015, vol. 62, p. 229. https://doi.org/10.7868/S001533031502013X

    Article  Google Scholar 

  23. Pettai, H., Oja, V., Freiberg, A., and Laisk, A., Photosynthetic activity of far-red light in green plants, Biochim. Biophys. Acta, 2005, vol. 1708 (3), p. 311. https://doi.org/10.1016/j.bbabio.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  24. Stoylova, S., Flint, T.D., Ford, R.C., and Holzenburg, A., Structural analysis of photosystem II in far-red-light-adapted thylakoid membranes: New crystal forms provide evidence for a dynamic reorganization of light-harvesting antennae subunits, Eur. J. Biochem., 2000, vol. 267, p. 207. https://doi.org/10.1046/j.1432-1327.2000.00996.x

    Article  CAS  PubMed  Google Scholar 

  25. Gavrilenko, V.F. and Zhigalova, T.V., Bolshoi praktikum po fotosintezu (Large Workshop on photosynthesis), Moscow: Akademiya, 2003.

  26. Alikov, Kh.K., Photocolorimetric method for determining the carbon content in leaves by wet combustion in a chromium mixture, Met. Kompl. Izuch. Fotosint., 1983, vol. 2, p. 6.

    Google Scholar 

  27. Morgan, P.W., Finlayson, S.A., Childs, K.L., Mullet, J.E., and Rooney, W.L., Opportunities to improve adaptability and yield in grasses, Crop Sci., 2002, vol. 42, p. 1791. https://doi.org/10.2135/cropsci2002.1791

    Article  Google Scholar 

  28. Zhen, S. and Bugbee, B., Substituting far-red for traditionally defined photosynthetic photons results in equal canopy quantum yield for CO2 fixation and increased photon capture during long-term studies: Implications for re-defining PAR, Front. Plant Sci., 2020, vol. 11, p. 581156. https://doi.org/10.3389/fpls.2020.581156

    Article  PubMed  PubMed Central  Google Scholar 

  29. Polívka, T. and Frank, H.A., Molecular factors controlling photosynthetic light harvesting by carotenoids, Acc. Chem. Res., 2010, vol. 43, p. 1125. https://doi.org/10.1021/ar100030m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biswal, U.C., Bergfeld, R., and Kasemir, H., Phytochrome-mediated delay of plastid senescence in mustard cotyledons: Changes in pigment contents and ultrastructure, Planta, 1983, vol. 157, p. 85.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the ECOLED-Trade company for providing LED lamps ECOLED-BIO-37-RF-D120-F-Trade IP65 (4000K) for this study.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation according to the state assignment no. NIOKTR 122031100058–3.

Author information

Authors and Affiliations

Authors

Contributions

T.N. Lisina planned the experiment, devised the experimental design, and wrote the manuscript. O.V. Burdysheva and E.S. Sholgin designed a grow box and adjusted the lighting protocols. V.A. Parfenkova and O.A. Chetina performed the experiments and processed experimental data.

Corresponding author

Correspondence to T. N. Lisina.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by A. Bulychev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: LED—light-emitting diode; FRL—far-red light; PAR—photosynthetically active radiation; RL—red light.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisina, T.N., Chetina, O.A., Parfenkova, V.A. et al. The Ratio of Red to Far-Red Light Affects Growth, Pigment Content, and Photosynthetic Rates in Cress Plants. Russ J Plant Physiol 71, 27 (2024). https://doi.org/10.1134/S1021443724604324

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443724604324

Keywords:

Navigation