Skip to main content
Log in

Features of Formation of Wheat’s Increased Cold Resistance under the Influence of Gold Nanoparticles

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Increasing climatic instability, along with increasing technogenic pressure on the natural environment, necessitate the search for new approaches to increasing the resistance of wheat to abiotic factors, primarily to low temperature. A promising direction is the use of metal nanoparticles, which have the ability to positively influence plant metabolism in low concentrations. Due to their small size (less than 100 nm) and special physicochemical, optical, and electrical properties, nanoparticles penetrate cellular barriers, spread throughout the plant organism, affecting almost all processes in it. With wheat as an example (Triticum aestivum L., variety Zlata), it was shown for the first time that gold nanoparticles (GNPs) can act as adaptogens, increasing the cold resistance of plants. The study used priming—soaking of seeds in GNP solutions with concentrations 5–50 μg/mL for 24 h. The plants grown from seeds treated with GNPs differed from the control (untreated) ones in a number of physiological, biochemical, and molecular genetic parameters. Their growth processes and activity of the photosynthetic apparatus were significantly enhanced, and the expression of genes encoding large (rbcL) and small (rbcS) Rubisco subunits, as well as COR genes, Wcor726 and Wcor15, were increased. Moreover, wheat plants obtained from GNP-treated seeds differed from control ones in their increased resistance to low temperatures, and the effect was manifested both under control conditions and after low-temperature hardening. Concentration tests showed that the maximum effect was achieved when using GNPs at a concentration of 10 μg/mL. It is concluded that GNPs are able to influence plant metabolism and the expression of stress response genes, which leads to a significant increase in cold resistance. Possible mechanisms of GNP action on low temperature resistance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Azameti, M.K. and Imoro, A.-W.M., Nanotechnology: A promising field in enhancing abiotic stress tolerance in plants, Crop Design, 2023, vol. 2, p. 100037. https://doi.org/10.1016/j.cropd.2023.100037

    Article  Google Scholar 

  2. Zhao, L., Bai, T., Wei, H., Gardea-Torresdey, J.L., Keller, A., and White,  J.C., Nanobiotechnology—based strategies for enhanced crop stress resilience, Nature Food, 2022, vol. 3, p. 829. https://doi.org/10.1038/s43016-022-00596-7

    Article  PubMed  Google Scholar 

  3. Alaqad, K. and Saleh, T.A., Gold and silver nanoparticles: Synthesis methods, characterization routes and applications towards drugs, J. Environ. Anal. Toxicol., 2016, vol. 6, p. 384. https://doi.org/10.4172/2161-0525.1000384

    Article  Google Scholar 

  4. Dykman, L.A. and Khlebtsov, N.G., Methods for chemical synthesis of colloidal gold, Russ. Chem. Rev., 2019, vol. 88, p. 229.

    Article  CAS  Google Scholar 

  5. Ramalingam, V., Multifunctionality of gold nanoparticles: plausible and convincing properties, Adv. Colloid Interface Sci., 2019, vol. 271, p.101989. https://doi.org/10.1016/j.cis.2019.101989

    Article  CAS  PubMed  Google Scholar 

  6. Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P.K., and Zaidi, M.G.H., Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea, Plant Growth Reg., 2012, vol. 66, p. 303. https://doi.org/10.1007/s10725-011-9649-z

    Article  CAS  Google Scholar 

  7. Kumar, V., Guleria, P., Kumar, V., and Yadav, S.K., Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana, Sci. Total Environ., 2013, vol. 461, p. 462. https://doi.org/10.1016/j.scitotenv.2013.05.018

    Article  CAS  PubMed  Google Scholar 

  8. Gunjan, B., Zaidi, M.G.H., and Sandeep, A., Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea, J. Plant Biochem. Physiol., 2014, vol. 2, p. 3. https://doi.org/10.4172/2329-9029.1000133

    Article  CAS  Google Scholar 

  9. Wan, Y., Li, J., Ren, H., Huang, J., and Yuan, H., Physiological investigation of gold nanorods toward watermelon, J. Nanosci. Nanotechnol., 2014, vol. 14, p. 6089. https://doi.org/10.1166/jnn.2014.8853

    Article  CAS  PubMed  Google Scholar 

  10. Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S., and Sarmah, A.K., Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination, Sci. Total Environ., 2016, vol. 573, p. 1089. https://doi.org/10.1016/j.scitotenv.2016.08.120

    Article  CAS  PubMed  Google Scholar 

  11. Das, S., Debnath, N., Pradhan, S., and Goswami, A., Enhancement of photon absorption in the light-harvesting complex of isolated chloroplast in the presence of plasmonic gold nanosol – a nanobionic approach towards photosynthesis and plant primary growth augmentation, Gold Bull., 2017, vol. 50, p. 247. https://doi.org/10.1007/s13404-017-0214-z

    Article  CAS  Google Scholar 

  12. Avellan, A., Yun, J., Zhang, Y., Spielman-Sun, E., Unrine, J.M., Thieme, J., Li, J., Lombi, E., Bland, G., and Lowry, G.V., Nanoparticle size and coating chemistry control foliar uptake pathways, translocation and leaf-to-rhizosphere transport in wheat, ACS Nano, 2019, vol. 13, p. 5291. https://doi.org/10.1021/acsnano.8b09781

    Article  CAS  PubMed  Google Scholar 

  13. Alhammad, B.A., Abdel-Aziz, H.M.M., Seleiman, M.F., and Tourky, S.M.N., How can biological and chemical silver nanoparticles positively impact physio-chemical and chloroplast ultrastructural characteristics of Vicia faba seedlings?, Plants, 2023, vol. 12, p. 2509. https://doi.org/10.3390/plants12132509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferrari, E., Barbero, F., Busquets-Fité, M., Franz-Wachtel, M., Köhler, H-R., Puntes, V., and Kemmerling, B., Growth-promoting gold nanoparticles decrease stress responses in Arabidopsis seedlings // Nanomaterials, 2021. V. 11. P. 3161. https://doi.org/10.3390/nano11123161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Milewska-Hendel, A., Witek, W., Rypien, A., Zubko, M., Baranski, R., Storoz, D., and Kurczynska, E.U., The development of a hairless phenotype in barley roots treated with gold nanoparticles is accompanied by changes in the symplasmic communication, Sci. Rep., 2019, vol. 9, p. 4724. https://doi.org/10.1038/s41598-019-41164-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dai, Sh., Wang, B., Song, Y., Xie, Zh., Li, Ch., Li, Sh., Huang, Y., and Jiang, M., Astaxanthin and its gold nanoparticles mitigate cadmium toxicity in rice by inhibiting cadmium translocation and uptake, Sci. Total Environ., 2021, vol. 786, p. 147496. https://doi.org/10.1016/j.scitotenv.2021.147496

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, M., Dai, Sh., Wang, B., Xie, Zh., Li, J., Wang, L., Li, Sh., Tan, Yu., Tian, B., Shu, Q., and Huang, O., Gold nanoparticles synthesized using melatonin suppress cadmium uptake and alleviate its toxicity in rice, Environ. Sci. Nano, 2021, vol. 8, p. 1042. https://doi.org/10.1039/D0EN01172J

    Article  CAS  Google Scholar 

  18. Wahid, I., Rani, P., Kumari, S., Ahmad, R., Hussain, S.J., Alamri, S., Tripathy, N., and Khan, M.I.R., Biosynthesized gold nanoparticles maintained nitrogen metabolism, nitric oxide synthesis, ions balance, and stabilizes the defense systems to improve salt stress tolerance in wheat, Chemosphere, 2022, vol. 287, p. 132142. https://doi.org/10.1016/j.chemosphere.2021.132142

    Article  CAS  PubMed  Google Scholar 

  19. Dykman, L.A. and Khlebtsov, N.G., Gold nanoparticles in biomedical applications: Recent advances and perspectives, Chem. Soc. Rev., 2012, vol. 41, p. 2256. https://doi.org/10.1039/c1cs15166e

    Article  CAS  PubMed  Google Scholar 

  20. Wellburn, A.R., The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution, J. Plant Physiol., 1994, vol. 144, p. 307. https://doi.org/10.1016/S0176-1617(11)81192-2

    Article  CAS  Google Scholar 

  21. Nakamura, M., Determination of fructose in the presence of a large excess of glucose. Part IV. A modified resorcinol-thiourea-hydrochloric acid reaction, Agric. Biol. Chem., 1967, vol. 32, p. 696. https://doi.org/10.1271/bbb1961.32.696

    Article  Google Scholar 

  22. Pashkovskiy, P., Kreslavski, V.D., Ivanov, Y., Ivanova, A., Kartashov, A., Shmarev, A., Strokina, V., Kuznetsov, V.V., and Allakhverdiev, S.I., Influence of light of different spectral compositions on the growth, photosynthesis, and expression of light-dependent genes of scots pine seedlings, Cells, 2021, vol. 10, p. 3284. https://doi.org/10.3390/cells10123284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hassan, H., Alatawi, A., Abdulmajeed, A., Emam, M., and Khattab, H., Roles of Si and SiNPs in improving thermotolerance of wheat photosynthetic machinery via upregulation of PsbH, PsbB and PsbD genes encoding PSII core proteins, Horticulturae, 2021, vol. 7, p. 16. https://doi.org/10.3390/horticulturae7020016

    Article  Google Scholar 

  24. Perdomo, J.A., Buchner, P., and Carmo-Silva, E., The relative abundance of wheat Rubisco activase isoforms is post-transcriptionally regulated, Photosynth. Res., 2021, vol. 148, p. 47. https://doi.org/10.1007/s11120-021-00830-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT–PCR, Nucleic Acids Res., 2001, vol. 29, p. e45. https://doi.org/10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rhaman, M.S., Tania, S.S., Imran, S., Rauf, F., Kibria, M.G., Ye, W., Hasanuzzaman, M., and Murata, Y., Seed priming with nanoparticles: An emerging technique for improving plant growth, development, and abiotic stress, J. Soil Sci. Plant Nutr., 2022, vol. 22, p. 4047. https://doi.org/10.1007/s42729-022-01007-3

    Article  CAS  Google Scholar 

  27. Joshi, A., Nayyar, A., Dharamvir, K., and Verma, G., Detection of gold nanoparticles signal inside wheat (Triticum aestivum L.) and oats (Avena sativa) seedlings, AIP Conf. Proc., 2018, vol. 1953, p. 030058. https://doi.org/10.1063/1.5032393

    Article  CAS  Google Scholar 

  28. Lahiani, M.H., Dervishi, E., Chen, J., Nima, Z., Gaume, A., Biris, A.S., and Khodakovskaya, M.V., Impact of carbon nanotube exposure to seeds of valuable crops, ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 7965. https://doi.org/10.1021/am402052x

    Article  CAS  PubMed  Google Scholar 

  29. Wang, X., Yang, X., Chen, S., Li, Q., Wang, W., Hou, Ch., Gao, X., Wangand, L., and Wang, Sh., Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis, Plant Sci., 2016, vol. 6, p. 1243. https://doi.org/10.3389/fpls.2015.01243

    Article  Google Scholar 

  30. Hasanpour, H., Maali-Amiri, R., and Zeinali, H., Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea, Russ. J. Plant Physiol., 2015, vol. 62, p. 779. https://doi.org/10.1134/S1021443715060096

    Article  CAS  Google Scholar 

  31. John, R., Anjum, R.A., Sopory, S.K., Akram, N.A., and Ashraf, M., Some key physiological and molecular processes of cold acclimation, Biol. Plant, 2016, vol. 60, p. 603. https://doi.org/10.1007/s10535-016-0648-9

    Article  CAS  Google Scholar 

  32. Keunen, E., Peshev, D., Vangronsveld, J., Ende, V.D., and Cuypers, A., Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept, Plant Cell Environ., 2013, vol. 36, p. 1242. https://doi.org/10.1111/pce.12061

    Article  CAS  PubMed  Google Scholar 

  33. Chang, C.Y.Y., Brautigam, K., Huner, N.P.A., and Ensminger, I., Champions of winter survival: Cold acclimation and molecular regulation of cold hardiness in evergreen conifers, New Phytol., 2020, vol. 229, p. 675. https://doi.org/10.1111/nph.16904

    Article  PubMed  Google Scholar 

  34. Ouellet, F., Vazquez-Tello, A., and Sarhan, F., The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species, FEBS Lett., 1998, vol. 423, p. 324. https://doi.org/10.1016/s0014-5793(98)00116-1

    Article  CAS  PubMed  Google Scholar 

  35. Rehman, S.U, Khushi, M., Sher, H., Que, Y., Ali, R., Ali, S., Hassan, I., Murad, A., and Rahat, M., Molecular analysis of cold responsive (COR) genes in selected sugarcane and Saccharum spontaneum L., Adv. Life Sci., 2022, vol. 9, p. 547.

    CAS  Google Scholar 

  36. Winifield, M.O., Lu, C., Wilson, I.D., Coghill, J.A., and Edwards, K.J., Plant responses to cold: Transcriptome analysis of wheat, Plant Biotechnol. J., 2010, vol. 8, p. 749. https://doi.org/10.1111/j.1467-7652.2010.00536.x

    Article  CAS  Google Scholar 

  37. NDong, C., Danyluk, J., Wilson, K.E., Pocock, T., Huner, N.P., and Sarhan, F., Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses, Plant Physiol., 2002, vol. 129, p. 1368. https://doi.org/10.1104/pp.001925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, F., Si, H., Wang, C., Sun, G., Zhou, E., Chen, C., and Ma, C., Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum, Sci. Rep., 2016, vol. 6, p. 31706. https://doi.org/10.1038/srep31706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takumi, S., Koike, A., Nakata, M., Kume, S., Ohno, R., and Nakamura, C., Cold-specific and light-stimulated expression of a wheat (Triticum aestivum L.) Cor gene Wcor15 encoding a chloroplast-targeted protein, J. Exp. Bot., 2003, vol. 54, p. 2265. https://doi.org/10.1093/jxb/erg247

    Article  CAS  PubMed  Google Scholar 

  40. Sun, C.W., Huang, Y.C., and Chang, H.Y., CIA2 coordinately up-regulates protein import and synthesis in leaf chloroplasts, Plant Physiol., 2009, vol. 150, p. 879. https://doi.org/10.1104/pp.109.137240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Lev Abramovich Dykman, Doctor of Biological Sciences, leading researcher at the Institute of Biochemistry and Physiology of Plants and Microorganisms (Saratov Scientific Center, Russian Academy of Sciences) for assistance in the synthesis and analysis of gold nanospheres used in this study.

Funding

The study was supported by the Russian Science Foundation, grant no. 23-26-00054 (https://rscf.ru/project/23-26-00054/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Venzhik.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: GNPs—gold nanoparticles; NPs—nanoparticles; PSA—photosynthetic apparatus.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venzhik, Y.V., Deryabin, A.N., Zhukova, K.V. et al. Features of Formation of Wheat’s Increased Cold Resistance under the Influence of Gold Nanoparticles. Russ J Plant Physiol 71, 34 (2024). https://doi.org/10.1134/S1021443724604191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443724604191

Keywords:

Navigation