Skip to main content
Log in

Putative Molecular Aspects of Succinic Semialdehyde Dehydrogenase’s Operation in the Leaves of Wheat (Triticum aestivum L.) under Salt Stress

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Elevation of the enzyme activity in the leaves of soft wheat (Triticum aestivum L.) observed under salt stress was related to the maintenance of the rate of tricarboxylic acid cycle at the expense of arrival of extra substrates. Activation of succinic semialdehyde dehydrogenase (SSADH) in the leaves of wheat exposed to salt stress induced by sodium chloride (NaCl) reaches its peak in 6 h and amounts to 12.2 E/g fr wt. Activation of the examined enzyme ensures maintenance of necessary ATP level owing to arrival of additional respiratory substrate in the TCA cycle under the effect of stress agent. It was shown that SSADH is genetically predetermined. On the basis of mRNA of homoeologous SSADH genes, specific primers were designed for quantification of their transcripts. Under the effect of salt stress, the content of transcripts of the genes encoding SSADH in the leaves of wheat changes. Comparison of changes in SSADH activity and expression of the examined genes in the leaves of wheat exposed to salt stress has shown that this enzyme is regulated by changes in their transcriptional activity. The main contribution to alteration of the content of SSADH transcripts is made by the gene SSADH belonging to subgenome A. A specific binding site for salt-dependent transcription factor WRKY was detected within promoter of gene SSADHA. Elevation of the content of WRKY transcripts may regulate expression of the gene SSADHA upon plant adaptation to stress impact via interaction with a specific binding site located in the transcription initiation region of its promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Dolgopolova, N.V., Skripin, V.A., Shershneva, O.M., and Alyabyeva, Yu.V., The importance of winter and spring wheat in food production, Vest. Kursk Gos. S-kh. Akad., 2009, vol. 5, no. 5, p. 52.

    Google Scholar 

  2. Glover, N.M., Redestig, H., and Dessimoz, C., Homoeologs: What are they and how do we infer them?, Trends Plant Sci., 2016, vol. 21, p. 609. https://doi.org/10.1016/j.tplants.2016.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levy, A.A. and Feldman, M., Evolution and origin of bread wheat, Plant Cell, 2022, vol. 34, p. 2549. https://doi.org/10.1093/plcell/koac130

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., and McDonald, G.K., Additive effects of Na+ and Cl ions on barley growth under salinity stress, J. Exp. Bot., 2011, vol. 62, p. 2189. https://doi.org/10.1093/jxb/erq422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, Y. and Guo, Y., Unraveling salt stress signaling in plants, J. I. Plant Biol., 2018, vol. 60, p. 796. https://doi.org/10.1111/jipb.12689

    Article  CAS  Google Scholar 

  6. Che-Othman, M.H., Jacoby, R.P., Millar, A.H., and Taylor, N.L., Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress, New Phytol., 2020, vol. 225, p. 1166. https://doi.org/10.1111/nph.15713

    Article  CAS  PubMed  Google Scholar 

  7. Yuan, D., Wu, X., Gong, B., Huo, R., Zhao, L., Li, J., Lü, G., and Gao, H., GABA metabolism, transport and their roles and mechanisms in the regulation of abiotic stress (hypoxia, salt, drought) resistance in plants, Metabolites, 2023, vol. 13, p. 347. https://doi.org/10.3390/metabo13030347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, X., Jia, Q., Ji, S., Gong, B., Li, J., Lü, G., and Gao, H., Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na+ uptake, the GAD gene, amino acid synthesis and reactive oxygen species metabolism, BMC Plant Biol., 2020, vol. 20, p. 465. https://doi.org/10.1186/s12870-020-02669-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fedorin, D.N., Eprintsev, A.T., Florez Caro, O.J., and Igamberdiev, A.U., Effect of salt stress on the activity, expression, and promoter methylation of succinate dehydrogenase and succinic semialdehyde dehydrogenase in maize (Zea mays L.) leaves, Plants, 2022, vol. 12, p. 68. https://doi.org/10.3390/plants12010068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramirez-Gonzalez, R.H., Borrill, P., Lang, D., Harrington, S.A., Brinton, J., Venturini, L., Davey, M., Jacobs, J., van Ex, F., Pasha, A., Khedikar, Y., Robinson, S.J., Cory, A.T., Florio, T., and Concia, L., The transcriptional landscape of polyploid wheat, Science, 2018, vol. 361, p. Eaar6089. https://doi.org/10.1126/science.aar6089

  11. Banerjee, A. and Roychoudhury, A., WRKY proteins: signaling and regulation of expression during abiotic stress responses, Sci. World J., 2015, vol. 2015. .https://doi.org/10.1155/2015/807560

  12. AbdElgawad, H., Zinta, G., Hegab, M.M., Pandey, R., Asard, H., and Abuelsoud, W., High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs, Front. Plant Sci., 2016, vol. 7, p. 276. https://doi.org/10.3389/fpls.2016.00276

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zemlyanukhin, A.A., Bolshoi praktikum po fiziologii rastenii (Large Workshop on Plant Physiology), Voronezh: Izd. Voronezh. Univ., 1996.

  14. Huang, X.Q. and Brule-Babel, A., Development of genome-specific primers for homoeologous genes in allopolyploid species: The waxy and starch synthase II genes in allohexaploid wheat (Triticum aestivum L.) as examples, BMC Res. Notes, 2010, vol. 3, p. 140. https://doi.org/10.1186/1756-0500-3-140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vennapusa, A.R., Somayanda, I.M., Doherty, C.J., and Jagadish, S.K., A universal method for high-quality RNA extraction from plant tissues rich in starch, proteins and fiber, Sci. Rep., 2020, vol. 10, p. 16887. https://doi.org/10.1038/s41598-020-73958-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nicot, N., Hausman, J.F., Hoffmann, L., and Evers, D., Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress, J. Exp. Bot., 2005, vol. 56, p. 2907. https://doi.org/10.1093/jxb/eri285

    Article  CAS  PubMed  Google Scholar 

  17. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method, Methods, 2001, vol. 25, p. 402. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  18. Lakin, G.F., Biometriya (Biometrics), Moscow: Vysshaya Shkola, 1990.

    Google Scholar 

  19. Wei, K., Chen, J., Chen, Y., Wu, L., and Xie, D., Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize, DNA Res., 2012, vol. 19, p. 153. https://doi.org/10.1093/dnares/dsr048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silva Monteiro de Almeida, D., Oliveira Jordão do Amaral, D., Del-Bem, L-E., Bronze dos Santos, E., Raner José Santana, S., Karina Peres, G., Michel, V., and Fabienne, M., Genome-wide identification and characterization of cacao WRKY transcription factors and analysis of their expression in response to witches' broom disease, PLoS One, 2017, vol. 12, p. e0187346. https://doi.org/10.1371/journal.pone.0187346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Che-Othman, M.H., Millar, A.H., and Taylor, N.L., Connecting salt stress signalling pathways with salinity-induced changes in mitochondrial metabolic processes in C3 plants, Plant Cell Environ., 2017, vol. 40, p. 2875. https://doi.org/10.1111/pce.13034

    Article  CAS  PubMed  Google Scholar 

  22. Coleman, S.T., Fang, T.K., Rovinsky, S.A., Turano, F.J., and Moye-Rowley, W.S., Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae, J. Biol. Chem., 2001, vol. 276, p. 244. https://doi.org/10.1074/jbc.M007103200

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, S., Zheng, W-J., Liu, B-H., Zheng, J-C., Dong, F-S., Liu, Z-F., Wen, Z-Y., Yang, F., Wang, H-B., Xu, Z-S., Zhao, H., and Liu, Y-W., Characterizing the role of TaWRKY13 in salt tolerance, Int. J. Mol. Sci., 2019, vol. 20, p. 5712. https://doi.org/10.3390/ijms20225712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qin, Y., Tian, Y., and Liu, X., A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana, Biochem. Biophys. Res. Commun., 2015, vol. 464, p. 428. https://doi.org/10.1016/j.bbrc.2015.06.128

    Article  CAS  PubMed  Google Scholar 

  25. Muhovski, I.H.Y., Zizkova, E., Dobrev, P.I., Gharbi, E., Franco-Zorrilla, J.M., Lopez-Vidriero, I., Solano, R., Clippe, A., Errachid, A., Motyka, V., and Lutts, S., The Solanum lycopersicum WRKY3 transcription factor SlWRKY3 is involved in salt stress tolerance in tomato, Front. Plant Sci., 2017, vol. 8, p. 1343. https://doi.org/10.3389/fpls.2017.01343

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kovalchuk, N., Jia, W., Eini, O., Morran, S., Pyvovarenko, T., Fletcher, S., Bazanova, N., Harris, J., Beck-Oldach, K., Shavrukov, Y., Langridge, P., and Lopato, S., Optimization ofTaDREB3 gene expression in transgenic barley using cold-inducible promoters, Plant Biotechnol. J., 2013, vol. 11, p. 659. https://doi.org/10.1111/pbi.12056

    Article  CAS  PubMed  Google Scholar 

  27. Whitfield, T.W., Wang, J., Collins, P.J., Partridge, E.C., Aldred, S.F., Trinklein, N.D., Myers, R.M., and Weng, Z., Functional analysis of transcription factor binding sites in human promoters, Genome Biol., 2012, vol. 13, p. R50. https://doi.org/10.1186/gb-2012-13-9-r50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shahmuradov, I.A., Umarov, R.Kh., and Solovyev, V.V., TSSPlant: A new tool for prediction of plant Pol II promoters, Nucleic Acids Res., 2017, vol. 45, p. e65. https://doi.org/10.1093/nar/gkw1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of a state assignment given to the institutions of higher education for 2023–2025, project no. FZGU-2023-0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Eprintsev.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by N. Balakshina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorin, D.N., Borodin, A.S. & Eprintsev, A.T. Putative Molecular Aspects of Succinic Semialdehyde Dehydrogenase’s Operation in the Leaves of Wheat (Triticum aestivum L.) under Salt Stress. Russ J Plant Physiol 71, 21 (2024). https://doi.org/10.1134/S1021443724604166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443724604166

Keywords:

Navigation