Skip to main content
Log in

Analysis of Anti-Inflammatory Properties of Plant Oxylipins Produced in the Hydroperoxide Lyase Branch

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Short-chain and medium-chain aldehydes and their derivatives, yielded by the enzymes hydroperoxide lyases from fatty acids, are present in many products of plant origin. They are often used as supplements to food to postpone its expiration date and to add a flavor of freshness. Since these compounds can be absorbed by the intestine cells and pass into systemic circulation, it is important to be aware of their influence on human health. In the present study, the potential biological activity of aldehydes and alcohols with chains containing six to nine carbon atoms were assessed. Their proinflammatory activities were tested in the experimental system based on donors’ whole blood. It was found that nine-carbon oxylipins stimulated the synthesis of the proinflammatory TNF-α cytokine (tumor necrosis factor alpha), and the stimulation by the aldehydes was weaker than that caused by the alcohols. The oxylipins containing six or eight carbons did not manifest proinflammatory activity. The obtained data may be of help to work out nutritional recommendations for patients suffering from inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Liavonchanka, A. and Feussner, I., Lipoxygenases: occurrence, functions and catalysis, J. Plant Physiol., 2006, vol. 163, p. 348. https://doi.org/10.1016/j.jplph.2005.11.006

    Article  CAS  PubMed  Google Scholar 

  2. Andreou, A. and Feussner, I., Lipoxygenases - structure and reaction mechanism, Phytochem., 2009, vol. 70, p. 1504. https://doi.org/10.1016/j.phytochem.2009.05.008

    Article  CAS  Google Scholar 

  3. Brash, A.R., Ingram, C.D., and Harris, T.M., Analysis of a specific oxygenation reaction of soybean lipoxygenase-1 with fatty acids esterified in phospholipids, Biochem., 1987, vol. 26, p. 5465. https://doi.org/10.1021/bi00391a038

    Article  CAS  Google Scholar 

  4. Leon, J., Royo, J., Vancanneyt, G., Sanz, C., Silkowski, H., Griffiths, G., and Sanchez-Serrano, J.J., Lipoxygenase H1 gene silencing reveals a specific role in supplying fatty acid hydroperoxides for aliphatic aldehyde production, J. Biol. Chem., 2002, vol. 277, p. 416. https://doi.org/10.1074/jbc.M107763200

    Article  CAS  PubMed  Google Scholar 

  5. Nakashima, A., von Reuss, S.H., Tasaka, H., Nomura, M., Mochizuki, S., Iijima, Y., Aoki, K., Shibata, D., Boland, W., Takabayashi, J., and Matsui, K., Traumatin- and Dinortraumatin-containing Galactolipids in Arabidopsis: their formation in tissue-disrupted leaves as counterparts of green leaf volatiles, J. Biol. Chem., 2013, vol. 288, p. 26078. https://doi.org/10.1074/jbc.M113.487959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, D.S., Nioche, P., Hamberg, M., and Raman, C.S., Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes, Nature, 2008, vol. 455, p. 363. https://doi.org/10.1038/nature07307

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Grechkin, A.N. and Hamberg, M., The “heterolytic hydroperoxide lyase” is an isomerase producing a short-lived fatty acid hemiacetal, Biochim. Biophys. Acta, 2004, vol. 1636, p. 47. https://doi.org/10.1016/j.bbalip.2003.12.003

    Article  CAS  PubMed  Google Scholar 

  8. Matsui, K., Kurishita, S., Hisamitsu, A., and Kajiwara, T., A lipid-hydrolysing activity involved in hexenal formation, Biochem. Soc. Trans., 2000, vol. 28, p. 857.

    Article  CAS  PubMed  Google Scholar 

  9. Zimmerman, D.C. and Coudron, C.A., Identification of traumatin, a wound hormone, as 12-oxo-trans-10-dodecenoic acid, Plant Physiol., 1979, vol. 63, p. 536. https://doi.org/10.1104/pp.63.3.536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kallenbach, M., Gilardoni, P.A., Allmann, S., Baldwin, I.T., and Bonaventure, G., C12 derivatives of the hydroperoxide lyase pathway are produced by product recycling through lipoxygenase-2 in Nicotiana attenuata leaves, New Phytol., 2011, vol. 191, p. 1054. https://doi.org/10.1111/j.1469-8137.2011.03767.x

    Article  CAS  PubMed  Google Scholar 

  11. Stumpe, M., Bode, J., Göbel, C., Wichard, T., Schaaf, A., Frank, W., Frank, M., Reski, R., Pohnert, G., and Feussner, I., Biosynthesis of C9-aldehydes in the moss Physcomitrella patens, Biochim. Biophys. Acta, 2006, vol. 1761, p. 301. https://doi.org/10.1016/j.bbalip.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  12. Tijet, N., Schneider, C., Muller, B.L., and Brash, A.R., Biogenesis of volatile aldehydes from fatty acid hydroperoxides: molecular cloning of a hydroperoxide lyase (CYP74C) with specificity for both the 9- and 13-hydroperoxides of linoleic and linolenic acids, Arch Biochem Biophys., 2001, vol. 386, p. 281. https://doi.org/10.1006/abbi.2000.2218

    Article  CAS  PubMed  Google Scholar 

  13. Noordermeer, M.A., Veldink, G.A., and Vliegenthart, J.F.G., Alfalfa contains substantial 9-hydroperoxide lyase activity and a 3Z:2E-enal isomerase, FEBS lett., 1999, vol. 443, p. 201. https://doi.org/10.1016/S0014-5793(98)01706-2

    Article  CAS  PubMed  Google Scholar 

  14. Kunishima, M., Yamauchi, Y., Mizutani, M., Kuse, M., Takikawa, H., and Sugimoto, Y., Identification of (Z)-3:(E)-2-hexenal isomerases essential to the production of the leaf aldehyde in plants, J. Biol. Chem., 2016, vol. 291, p. 14023. https://doi.org/10.1074/jbc.M116.726687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bate, N.J., Riley, J.C.M., Thompson, J.E., and Rothstein, S.J., Quantitative and qualitative differences in C6-volatile production from the lipoxygenase pathway in an alcohol dehydrogenase mutant of Arabidopsis thaliana, Physiol. Plant., 1998, vol. 104, p. 97. https://doi.org/10.1034/j.1399-3054.1998.1040113.x

    Article  CAS  Google Scholar 

  16. Tanaka, T., Ikeda, A., Shiojiri, K., Ozawa, R., Shiki, K., Nagai-Kunihiro, N., Fujita, K., Sugimoto, K., Yamato, K.T., Dohra, H., Ohnishi, T., Koeduka, T., and Matsui, K., Identification of a hexenal reductase that modulates the composition of green leaf volatiles, Plant Physiol., 2018, vol. 178, p. 552. https://doi.org/10.1104/pp.18.00632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D'Auria, J.C., Pichersky, E., Schaub, A., Hansel, A., and Gershenzon, J., Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana, Plant J., 2007, vol. 49, p. 194. https://doi.org/10.1111/j.1365-313X.2006.02946.x

    Article  CAS  PubMed  Google Scholar 

  18. Kihara, H., Tanaka, M., Yamato, K.T., Horibata, A., Yamada, A., Kita, S., Ishizaki, K., Kajikawa, M., Fukuzawa, H., Kohchi, T., Akakabe, Y., and Matsui, K., Arachidonic acid-dependent carbon-eight volatile synthesis from wounded liverwort (Marchantia polymorpha), Phytochem., 2014, vol. 107, p. 42. https://doi.org/10.1016/j.phytochem.2014.08.008

    Article  CAS  Google Scholar 

  19. Noordermeer, M.A., Van Dijken, A.J., Smeekens, S.C., Veldink, G.A., and Vliegenthart, J.F., Characterization of three cloned and expressed 13-hydroperoxide lyase isoenzymes from alfalfa with unusual N-terminal sequences and different enzyme kinetics, Eur. J. Biochem., 2000, vol. 267, p. 2473. https://doi.org/10.1046/j.1432-1327.2000.01283.x

    Article  CAS  PubMed  Google Scholar 

  20. Matsui, K., Minami, A., Hornung, E., Shibata, H., Kishimoto, K., Ahnert, V., Kindl, H., Kajiwara, T., and Feussner, I., Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber, Phytochem., 2006, vol. 67, p. 649. https://doi.org/10.1016/j.phytochem.2006.01.006

    Article  CAS  Google Scholar 

  21. Prost, I., Dhondt, S., Rothe, G., Vicente, J., Rodriguez, M.J., Kift, N., Carbonne, F., Griffiths, G., Esquerré-Tugayé, M.-Th., Rosahl, S., Castresana, C., Hamberg, M., and Fournier, J., Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens, Plant Physiol., 2005, vol. 139, p. 1902. https://doi.org/10.1104/pp.105.066274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsui, K., Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism, Curr. Opin. Plant Biol., 2006, vol. 9, p. 274. https://doi.org/10.1016/j.pbi.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  23. Savchenko, T., Pearse, I.S., Ignatia, L., Karban, R., and Dehesh, K., Insect herbivores selectively suppress the HPL branch of the oxylipin pathway in host plants, Plant J., 2013, vol. 73, p. 653. https://doi.org/10.1111/tpj.12064

    Article  CAS  PubMed  Google Scholar 

  24. Loreto, F., Barta, C., Brilli, F., and Nogues, I., On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature, Plant Cell Environ., 2006, vol. 29, p. 1820. https://doi.org/10.1111/j.1365-3040.2006.01561.x

    Article  CAS  PubMed  Google Scholar 

  25. Shipelin, V.A. and Sidorova, Yu.S., Oxylipins - biologically active substances in food, Vopr. pit., 2020, vol. 89, p.16 https://doi.org/10.24411/0042-8833-2020-10073

    Article  Google Scholar 

  26. Thies, F., Miles, E.A., Nebe-von-Caron, G., Powell, J.R., Hurst, T.L., Newsholme, E.A., and Calder, P.C., Influence of dietary supplementation with long-chain n-3 or n-6 polyunsaturated fatty acids on blood inflammatory cell populations and functions and on plasma soluble adhesion molecules in healthy adults, Lipids, 2001, vol. 36, p. 1183. https://doi.org/10.1007/s11745-001-0831-4

    Article  CAS  PubMed  Google Scholar 

  27. Radzyukevich, Y.V., Kosyakova, N.I., and Prokhorenko, I.R., Synergistic effect of Dermatophagoides pteronyssinus allergen and Escherichia coli lipopolysaccharide on human blood cells, PloS One, 2018, vol. 13, p. e0207311.https://doi.org/10.1371/journal.pone.0207311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barret, R., Medicinal Chemistry: fundamentals, Elsevier, 2018.

    Google Scholar 

  29. Veber, D.F., Johnson, S.R., Cheng, H.-Y., Smith, B.R., Ward, K.W., and Kopple, K.D., Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem., 2002, vol. 45, p. 2615. https://doi.org/10.1021/jm020017n

    Article  CAS  PubMed  Google Scholar 

  30. Filimonov, D.A., Lagunin, A.A., Gloriozova, T.A., Rudik, A.V., Druzhilovsky, D.S., Pogodin, P.V., and Poroiko, V.V., Prediction of biological activity spectra of organic compounds using a web resource PASS ONLINE, Khim. geterots. soed., 2014, vol. 3, p. 483.

  31. Kumar, A., Taghi Khani, A., Sanchez Ortiz, A., and Swaminathan, S., GM-CSF: a double-edged sword in cancer immunotherapy, Front. Immunol., 2022, vol. 13, p. 901277. https://doi.org/10.3389/fimmu.2022.901277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Savchenko, T., Degtyaryov, E., Radzyukevich, Y., and Buryak, V., Therapeutic potential of plant oxylipins, Int. J. Mol. Sci., 2022, vol. 23, p. 14627. https://doi.org/10.3390/ijms232314627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lehtonen, M., Kekäläinen, S., Nikkilä, I., Kilpeläinen, P., Tenkanen, M., and Mikkonen, K.S., Active food packaging through controlled in situ production and release of hexanal, Food Chem.: X., 2020, vol. 5, p. 100074. https://doi.org/10.1016/j.fochx.2019.100074

    Article  CAS  PubMed  Google Scholar 

  34. Mussinan, C.J., Mookherjee, B.D., Vock, M.H., Schmitt, F.L., Granda, E.J., Vinals, J.F., and Kiwala, J., US Patent 4241098, 1979.

  35. Vincenti, S., Mariani, M., Alberti, J.-C., Jacopini, S., Brunini-Bronzini de Caraffa, V., Berti, L., and Maury, J., Biocatalytic synthesis of natural green leaf volatiles using the lipoxygenase metabolic pathway, Catalysts, 2019, vol. 9, p. 873. https://doi.org/10.3390/catal9100873

    Article  CAS  Google Scholar 

  36. Karg, K., Dirsch, V.M., Vollmar, A.M., Cracowski, J.L., Laporte, F., and Mueller, M.J., Biologically active oxidized lipids (phytoprostanes) in the plant diet and parenteral lipid nutrition, Free Radic. Res., 2007, vol. 41, p. 25. https://doi.org/10.1080/10715760600939734

    Article  CAS  PubMed  Google Scholar 

  37. Larsson, K., Harrysson, H., Havenaar, R., Alminger, M., and Undeland, I., Formation of malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) in fish and fish oil during dynamic gastrointestinal in vitro digestion, Food Funct., 2016, vol. 7, p. 1176. https://doi.org/10.1039/c5fo01401h

    Article  CAS  PubMed  Google Scholar 

  38. Goicoechea, E., Brandon, E.F., Blokland, M.H., and Guillén, M.D., Fate in digestion in vitro of several food components, including some toxic compounds coming from omega-3 and omega-6 lipids, Food Chem. Toxicol., 2011, vol. 49, p. 115. https://doi.org/10.1016/j.fct.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  39. Salem, M.L., Immunomodulatory and therapeutic properties of the Nigella sativa L. seed, Int. Immunopharmacol., 2005, vol. 5, p. 1749. https://doi.org/10.1016/j.intimp.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  40. Block, K.I. and Mead, M.N., Immune system effects of echinacea, ginseng, and astragalus: a review, Integr. Cancer Ther., 2003, vol. 2, p. 247. https://doi.org/10.1177/1534735403256419

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 22-24-00489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Savchenko.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by A. Aver’yanov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: HPL—hydroperoxide lyase; LOX—lipoxigenase; LPS—lipopolysaccharide; TNF—tumor necrosis factor.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radzyukevich, Y.V., Tikhonov, K.G., Degtyaryov, E.A. et al. Analysis of Anti-Inflammatory Properties of Plant Oxylipins Produced in the Hydroperoxide Lyase Branch. Russ J Plant Physiol 70, 166 (2023). https://doi.org/10.1134/S1021443723700279

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723700279

Keywords:

Navigation