Skip to main content
Log in

Phenolic Compounds of Plants Bidens tripartita (L.) and Bidens pilosa (L.) from Different Locations

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Bidens tripartita L. and Bidens pilosa L. are potential sources of biologically active substances with antimicrobial, antidiabetic, anticancer, anti-inflammatory, antioxidant, and other activities. These types of strings are widely used in different countries in phytomedicine. It was established that the studied species are rich in a variety of phenolic compounds, and plants growing in temperate continental (Tatarstan) and tropical (Burundi) climates differ slightly in the content of phenolic compounds, which indicates a genetically determined narrow amplitude of variability in the metabolism of these species. Qualitative analysis of phenolic compounds showed that the studied plant species synthesize certain groups of compounds for adaptation to specific environmental conditions. Kirimiro in the Republic of Burundi and Spassky raion in the Republic of Tatarstan can be considered as promising areas for growing and collecting the plant species under study. Temperature, altitude, rainfall, and soil composition are key factors affecting phenolic content in B. pilosa and B. tripartita plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Chang, S.L., Chiang, Y.M., Chang, C.L., Yeh, H.H., Shyur, L.F., Kuo, Y.H., Wu, T.K., and Yang, W.C., Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-gamma expression, J. Ethnopharmacol., 2007, vol. 112, p. 232. https://doi.org/10.1016/j.jep.2007.03.001

    Article  CAS  PubMed  Google Scholar 

  2. Wu, L., Nie, L., Guo, S., Wang, Q., Wu, Z., Lin, Y., Wang, Y., Li, B., Gao, T., and Yao, H., Identification of medicinal Bidens plants for quality control based on organelle genomes, Front. Pharmacol., 2022, vol. 13, p. 1. https://doi.org/10.3389/fphar.2022.84213

    Article  Google Scholar 

  3. Mohi, U., Environmental factors on secondary metabolism of medicinal plants, Acta Sci. Pharm. Sci., 2019, vol. 3, p. 34. https://doi.org/10.31080/ASPS.2019.03.0338

    Article  Google Scholar 

  4. Ncube, B., Finnie, J.F., and Van Staden, J., Quality from the field: The impact of environmental factors as quality determinants in medicinal plants, S. Afr. J. Bot., 2012, vol. 82, p. 11. https://doi.org/10.1016/j.sajb.2012.05.009

    Article  Google Scholar 

  5. Mohiuddin, A.K., Impact of various environmental factors on secondary metabolism of medicinal plants, J. Pharm. ClinRes., 2019, vol. 7, p. 1. https://doi.org/10.19080/JPCR.2019.07.555704

    Article  Google Scholar 

  6. Sarker, U. and Oba, S., Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable, BMC Plant Biol., 2018, vol. 18, p. 1. https://doi.org/10.1186/s12870-018-1484-1

    Article  CAS  Google Scholar 

  7. Jan, R., Asaf, S., Numan, M., and Lubna Kim, K-M., Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions, Agronomy, 2021, vol. 11, p. 1. https://doi.org/10.3390/agronomy11050968

    Article  CAS  Google Scholar 

  8. Yuan, Y., Tang, X., Jia, Z., Li, C., Ma, J., and Zhang, J., The Effects of ecological factors on the main medicinal components of Dendrobium officinale under different cultivation modes, Forests, 2020, vol. 11, p. 1.

    Article  Google Scholar 

  9. Issa, A.M., Ambrose, O.A., Mohammed, M., Haruna, K., and Jacobus, N.E., Effects of geographical location on the yield and bioactivity of Anoigeissus leiocarpus, J. Pharm. Biores., 2008, vol. 5, p. 68. https://doi.org/10.4314/jpb.v5i2.52995

  10. Zaprometov, M.N., Phenolic compounds and methods for their determination, in Biokhimicheskiye metody v fiziologii rasteniy (Biochemical Methods in Plant Physiology), Moscow: Nauka, 1971.

    Google Scholar 

  11. Andreeva, V.Yu. and Kalinkina, G.I., Development of a method for the quantitative determination of flavonoids in Alchemilla vulgaris l.s.l., Khim. rast. mat., 2000, vol. 1, p. 85.

  12. Suleymanov, F.Sh., Determination of tannins in grass Solidago canadensis L., J. Sci. Articles “Health and Education Millennium”, 2017, vol. 19, p. 302.

    Google Scholar 

  13. Khusnetdinova, L.Z., Akulov, A.N., and Dubrovnaya, S.A., Study of the spectrum of biologically active flavonoids of the herb Hypericum perforatum L. flora of the Republic of Tatarstan using high-performance liquid chromatography, Khim. rast. mat, 2017, vol. 4, p. 175.

  14. Šamec, D., Karalija, E., Šola, I., Vujčić, B.V., and Salopek-Sondi, B., The role of polyphenols in abiotic stress response: The influence of molecular structure, Plants, 2021, vol. 10, p. 118. https://doi.org/10.3390/plants10010118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nicolas, N., Bruno, G., Michael, N.C., María, M.M., and Renée, H.F., The influence of environmental variations on the phenolic compound profiles and antioxidant activity of two medicinal Patagonian valerians (Valeriana carnosa Sm. and V. clarionifolia Phil.), AIMS Agric. Food, 2021, vol. 6, p. 106. https://doi.org/10.3934/agrfood.2021007

    Article  Google Scholar 

  16. Ghasemi, K., Ghasemi, Y., Ehteshamnia, A., Nabavi, S.M., Nabavi, S.F., Ebrahimzadeh, M.A., and Pourmorad, F., Influence of environmental factors on antioxidant activity, phenol and flavonoids contents of walnut (Juglans regia L.) green husks, J. Medic. Plants Res., 2011, vol. 5, p. 1128.

    CAS  Google Scholar 

  17. Ibrahim, A.I., Jabbour, A.A., Abdulmajeed, A.M., Elhady, M.E., Almaroai, Y.A., and Hashim, A.M., Adaptive responses of four medicinal plants to high altitude oxidative stresses through the regulation of antioxidants and secondary metabolites, Agronomy, 2022, vol. 12, p. 1. https://doi.org/10.3390/agronomy12123032

    Article  CAS  Google Scholar 

  18. Singh, P., Arif, Y., Bajguz, A., and Hayat, S., The role of quercetin in plants, Plant Physiol. Biochem., 2021, vol. 66. P. 10. https://doi.org/10.1016/j.plaphy.2021.05.023

    Article  CAS  Google Scholar 

  19. Oney-Montalvo, J., Uc-Varguez, A., Ramírez-Rivera, E., Ramírez-Sucre, M., and Rodríguez-Buenfil, I., Influence of soil composition on the profile and content of polyphenols in habanero peppers (Capsicum chinense Jacq), Agronomy, 2020, vol. 10, p. 1. https://doi.org/10.3390/agronomy10091234

    Article  CAS  Google Scholar 

  20. Bénard, C., Bourgaud, F., and Gautier, H., Impact of temporary nitrogen deprivation on tomato leaf phenolics, Int. J. Mol. Sci., 2011, vol. 12, p. 7971. https://doi.org/10.3390/ijms12117971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Olsen, K.M., Slimestad, R., Lea, U.S., Brede, C., Løvdal, T., Ruoff, P., Verheul, M., and Lillo, C., Temperature and nitrogen effects on regulators and products of the flavonoid pathway: experimental and kinetic model studies, Plant Cell Environ., 2009, vol. 32, p. 286. https://doi.org/10.1111/j.1365-3040.2008.01920

    Article  CAS  PubMed  Google Scholar 

  22. Scheible, W.R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M.K., and Stitt, M., Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen, Plant Physiol., 2004, vol. 136, p. 2483. https://doi.org/10.1104/pp.104.047019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh, P., The role of quercetin in plants, Plant Physiol. Biochem., 2021, vol. 166, p. 10. https://doi.org/10.1016/j.plaphy.2021.05.023

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Jaakola, L. and Hohtola, A., Effect of latitude on flavonoid biosynthesis in plants, Plant Cell Environ., 2010, vol. 33, p. 1239. https://doi.org/10.1111/j.1365-3040.2010.02154

    Article  CAS  PubMed  Google Scholar 

  25. Narvekar, A.S. and Tharayil, N., Nitrogen fertilization influences the quantity, composition, and tissue association of foliar phenolics in strawberries, Front. Plant Sci., 2021, vol. 12, p. 1. https://doi.org/10.3389/fpls.2021.613839

    Article  Google Scholar 

  26. Marlin, M., Simarmat, M., Salamah, U., and Nurcholis, W., Effect of nitrogen and potassium application on growth, total phenolic, flavonoid contents, and antioxidant activity of Eleutherine palmifolia, AIMS Agricul. Food, 2022, vol. 7, p. 580. https://doi.org/10.3934/agrfood.2022036

    Article  Google Scholar 

  27. Anteh, J.D., Timofeeva, O.A., and Mostyakova, A.A., Assessment of mineral nutrient impact on metabolites accumulation in kale (Brassica oleracea var. sabellica), Sib. J. Life Sci. Agric., 2021, vol. 13, p. 208. https://doi.org/10.12731/2658-6649-2021-13-3-208-224

    Article  Google Scholar 

  28. Nagahama, N., Gastaldi, B., Clifford, M.N., Manifesto, M.M., and Fortunato, R.H., The influence of environmental variations on the phenolic compound profiles and antioxidant activity of two medicinal Patagonian valerians (Valeriana carnosa Sm. and V. clarionifolia Phil.), AIMS Agric. Food, 2021, vol. 6, p. 106. https://doi.org/10.3934/agrfood.2021007

    Article  Google Scholar 

Download references

Funding

The work was carried out with funds from the strategic academic leadership program of the Kazan (Volga region) Federal University (PRIORITY-2030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bimenyindavyi.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: WPC—water-soluble phenolic compounds; RB—Republic of Burundi; RT—Republic of Tatarstan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bimenyindavyi, E., Khusnetdinova, L.Z. & Timofeeva, O.A. Phenolic Compounds of Plants Bidens tripartita (L.) and Bidens pilosa (L.) from Different Locations. Russ J Plant Physiol 70, 160 (2023). https://doi.org/10.1134/S1021443723700243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723700243

Keywords:

Navigation