Skip to main content
Log in

Sterol Composition of Lichen Peltigera canina When Exposed to Unfavorable Temperatures

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Currently, special attention is paid to the study of the mechanisms of stress resistance of extremophile organisms that can survive in extreme conditions. Such organisms include lichens, which are symbiotic associations of fungi and algae and/or cyanobacteria. The high stress resistance of lichens is due to the presence of a wide range of biologically active metabolites, including sterols. It is known that lichens have a diverse and unique sterol composition, different from that of fungi and algae. Sterol-mediated biochemical mechanisms of stress resistance in lichens have not been fully studied and not systematized. Temperature stress is quite common for lichens, which often grow in unfavorable conditions. It is known that dry lichen thalli are able to withstand temperature changes over large ranges, while hydrated thalli are much more sensitive to unfavorable temperatures. In this work, stress-induced changes in respiratory activity and membrane stability index (MSI), as well as the sterol profile of hydrated lichen thalli, of Peltigera canina (L.) Willd. under the influence of elevated (+40°С) and low (–20°С) temperatures was investigated. It was shown that unfavorable temperatures caused a suppression of respiration rate and a decrease in the MSI of lichen thalli. Chromatomass spectrometric analysis showed the presence of P. canina ergosterol, dehydroergosterol, episterol, lichesterol, and fungisterol. Under the influence of both stress factors, there was a decrease in the level of ergosterol and an increase in the proportion of episterol. Under cold stress conditions, the proportion of dehydroergosterol also increased, the proportion of lichesterol decreased, and the relative content of the more saturated sterol fungisterol remained at the control level. It can be assumed that stress-induced changes in the sterol profile of lichens under low-temperature exposure create an optimal balance of sterols in membranes, which provides conditions for the deployment of a successful strategy leading to the adaptation of the lichen to the action of a stressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Dyakov, Yu.T., Botanika. Kurs al’gologii i mikologii (Botany. Course of Algology and Mycology), Moscow: Izd. MSU, 2007.

    Google Scholar 

  2. Armstrong, R.A., Adaptation of lichens to extreme conditions, Plant Adaptation Strategies Changing Environment, Shukla, V., Kumar, S., and Kumar, N., Eds., Springer, 2017, p. 1. https://doi.org/10.1007/978-981-10-6744-0_1

    Book  Google Scholar 

  3. Stocker-Wörgötter, E., Stress and developmental strategies of lichens, in Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, Seckbach, J. and Grube, M., Eds., Springer, Dordrecht, 2010, vol. 17, p. 525. https://doi.org/10.1007/978-90-481-9449-0_27

    Book  Google Scholar 

  4. Stanton, D.E, Ormond, A., Koch, N. M., and Colesie, C., Lichen ecophysiology in a changing climate, Am. J. Bot., 2023, vol. 110, p. E16131. https://doi.org/10.1002/ajb2.16131

    Article  PubMed  Google Scholar 

  5. Chen, K. and Wei, J.-C., Heat tolerance of the mycobionts and phycobionts from three desert lichens, Mycosystema, 2015, vol. 34, p. 1007.

    Google Scholar 

  6. Kalugina, Yu.V. and Nikitina, I.I., Kriobiologiya (Cryobiology), Kyiv: Naukova Dumka, 1994.

    Google Scholar 

  7. Poryadina, L.N., Prokopyev, I.A., Konoreva, L.A., Chesnokov, S.V., Sleptsov, I.V., Filippova, G.V., and Shashurin, M.M., Adaptive biochemical mechanisms ensuring the resistance of lichens to extreme environmental conditions, Prirod. res. Arky. Subarky., 2018, vol. 26, p. 109. https://doi.org/10.31242/2618-9712-2018-26-4-109-117

    Article  Google Scholar 

  8. Vainshtein, E.A., Some questions of the physiology of lichens. I. Respiration, Bot. zh., 1972, vol. 7, p. 832.

    Google Scholar 

  9. Beckett, R.P., Minibayeva, F.V., Vylegzhanina, N.N. and Tolpysheva, T., High rates of extracellular superoxide production by lichens in the suborder Peltigerineae correlate with indices of high metabolic activity, Plant, Cell Environ., 2003, vol. 41, p. 1827.

    Article  Google Scholar 

  10. Semikhatova, O.A. and Chulanovskaya, M.V., Manometricheskie metody izucheniya dykhaniya i fotosinteza rastenii (Manometric Methods for Studying Breathing and Plant Photosynthesis), Moscow: Nauka, 1965.

    Google Scholar 

  11. Sundberg, B., Ekblad, A., Näsholm, T., and Palmqvist, K., Lichen respiration in relation to active time, temperature, nitrogen and ergosterol concentrations, Funct. Ecol., 2002, vol. 13, p. 119. https://doi.org/10.1046/j.1365-2435.1999.00295.x

    Article  Google Scholar 

  12. Grishenkova, N.N. and Lukatkin, A.S., Determination of the resistance of plant tissues to abiotic stress using the conductometric method, Povolzh. ekol. zh., 2005, vol. 1, p. 3.

  13. Bligh, E.C. and Dyer, W.J., A rapid method of total lipid extraction and purification, Can J. Biochem. Physiol., 1959, vol. 37, p. 911.

    Article  CAS  PubMed  Google Scholar 

  14. General Pharmacopoeia 1.2.1.0010.15, Weight loss on drying, State Pharmacopoeia of the Russian Federation, XIII edition, vol. 1.

  15. Safe, S., Safe, L.M., and Maass, W.S.G., Sterols of three lichen species: Lobaria pulmonaria, Lobaria scrobiculata and Usnea longissimi, Phytochemistry, 1975, vol. 14, p. 1821.

    Article  CAS  Google Scholar 

  16. Solberg, Y., Chemical constituents of the lichens Cetraria delisei, Lobaria pulmonaria, Stereocaulon tomentosum and Usnea hirtal, J. Hattori Bot. Lab., 1987, vol. 63, p. 357.

    CAS  Google Scholar 

  17. Gorbach, N.V., Lishainiki Belorussii. Opredelitel’ (Lichens of Belarus. Key), Minsk: Nauka I Tekh., 1973.

    Google Scholar 

  18. Sundberg, B., Palmqvist, K., Esseen, P.-A., and Renhorn, K.-E., Growth and vitality of epiphytic lichens. II. Modelling of carbon gain using field and laboratory data, Oecologia, 1997, vol. 13, p. 10.

    Article  ADS  Google Scholar 

  19. Ahmadjian, V., The Lichen Symbiosis, Chichester: John Wiley & Sons, New York, 1993.

    Google Scholar 

  20. Nash, T.H., Photosynthesis, Respiration, Productivity and Growth. Lichen Biology, Cambridge: Cambridge University Press, 1996.

    Google Scholar 

  21. Smyth, E.S., A contribution to the physiology and ecology of Peltigera canina and P. polydactyla, Ann. Bot., 1934, vol. 48, p. 781.

    Article  CAS  Google Scholar 

  22. Mulgrew, A. and Williams, P., Biomonitoring of air quality using plants, Air Hygiene Report 10, London: Kings College, 2000.

    Google Scholar 

  23. Garty, J., Tomer, S., Levin, T., and Lehr, H., Lichens as biomonitors around a coal-fired power station in Israel, Environ. Res., 2003, vol. 91, p. 186. https://doi.org/10.1016/s0013-9351(02)00057-9

    Article  CAS  PubMed  Google Scholar 

  24. Marques, A.P., Maria, C.F., Hubert, T.W., Steinebach, O.M., Verburg, T., and De Goeij, J.J., Cell-membrane damage and element leaching in transplanted Parmelia sulcata lichen related to ambient SO2, temperature, and precipitation, Environ. Sci. Technol., 2005, vol. 39, p. 2624. https://doi.org/10.1021/es0498888

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Gimalov, F.R., Perception of a cold signal by plants, or how a plant “thermometer” works, Izv. Ufim. ts. RAN, 2018, p. 19. https://doi.org/10.31040/2222-8349-2018-0-2-19-24

  26. Los, D.A., Mironov, K.S., and Allakhverdiev, S.I., Regulatory role of membrane fluidity in gene expression and physiological functions, Photosynth. Res., 2013, vol. 116, p. 489.

    Article  CAS  PubMed  Google Scholar 

  27. Sangwan, V., Orvar, B.J., Beyerly, J., Hirt, H., and Dhindsa, R.S., Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways,The Plant J., 2002, vol. 31, p. 629.

    Article  CAS  PubMed  Google Scholar 

  28. Saidi, Y., Peter, M., Finka, A., Cicekli, C., Vigh, L., and Goloubinoff, P., Membrane lipid composition affects plant heaty sebsing and modulates Ca+-dependent heat shock response, Plant Sign. behav., 2010, vol. 5, p. 1530.

    Article  CAS  Google Scholar 

  29. Rawat, N., Singla-Pareek, S.L., and Pareek, A., Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same, Physiol. Plant, 2021, vol. 171, p. 653. https://doi.org/10.1111/ppl.13217

    Article  CAS  PubMed  Google Scholar 

  30. Renne, M.F., and IPM de Kroon, A., The role of phospholipid molecular species in determining the physical properties of yeast membranes, FEBS Lett., 2018, vol. 8, p. 1330.

    Article  Google Scholar 

  31. Suzuki, I., Los, D.A., Kanesaki, Y., Mikami, K., and Murata, N., The pathway for perception and transduction of low-temperature signals in Synechocystis, EMBO J., 2000, vol. 19, p. 1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mysyakina, I.S. and Funtikova, N.S., The role of sterols in morphogenetic processes and dimorphism of fungi, Mikrobiol., 2007, vol. 76, p. 5.

    Google Scholar 

  33. Popov, A.M., Comparative study of effects of various sterols and triterpenoids on permeability of model lipid membranes, J. Evol. Biochem. Physiol., 2003, vol. 39, p. 314.

    Article  CAS  Google Scholar 

  34. Dembitsky, V.M. and Tolstikov, G.A., Prirodnye galogenirovannye organicheskie soyedineniya (Natural Halogenated Organic Compounds), Novosibirsk: Publishing house SB RAS, Geo, 2003.

  35. Berridge, M.J. and Irvine, R.F., Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature, 1984, vol. 312, p. 315.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Xue, H.-W., Chen, X., and Me, Y., Function and regulation of phospholipid signaling in plants, Biochem. J., 2009, vol. 421, p. 145.

    Article  CAS  PubMed  Google Scholar 

  37. Su, K., Bremer, D.J., and Jeannotte, R., Membrane lipid composition and heat tolerance in cool-season turfgrasses, including a hybrid bluegrass, J. Amer. Soc. Hort. Sci., 2009, vol. 134, p. 511.

    Article  Google Scholar 

  38. Ravchaudhuri, S., Im, Y.J., Hurley, J.H., and Prinz, W.A., Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides, J. Cell Biol., 2006, vol. 173, p. 107.

    Article  Google Scholar 

  39. Tarchevsky, I.A., Signal’nye sistemy kletok rastenii (Signaling Systems of Plant Cells), M.: Nauka, 2002.

    Google Scholar 

  40. Fabri, J., de Sa, N.P., Malavazi, I., and Del Poeta, M., The dynamics and role of sphingolipids in eukaryotic organisms upon thermal adaptation, Prog Lipid Res., 2020, vol. 80, p. e101063 https://doi.org/10.1016/j.plipres.2020.101063

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state assignment of the Kazan Scientific Center of the Russian Academy of Sciences (assessment of respiratory activity and MSI), as well as with the financial support of a grant from the Russian Scientific Fund https://rscf.ru/project/22-14-00362 (manager) Yu.N. Valitova).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Valitova.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: MSI—membrane stability index; LPC—lysophosphatidylcholine; PI—phosphatidylinositol; PA—phosphatidic acid; PC—phosphatidylcholine; PE—phosphatidylethanolamine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valitova, J.N., Khabibrakhmanova, V.R., Babaev, V.M. et al. Sterol Composition of Lichen Peltigera canina When Exposed to Unfavorable Temperatures. Russ J Plant Physiol 70, 180 (2023). https://doi.org/10.1134/S1021443723603154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723603154

Keywords:

Navigation