Skip to main content
Log in

Phenological Fluctuations of Secondary Metabolites in Dracocephalum charkeviczii

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Plants from the genus Dracocephalum are a source of biologically active compounds, including rosmarinic acid and different flavonoids. Their concentration varies during the vegetation period. In order to examine changes in their content in Dracocephalum charkeviczii Prob., an endemic species of Sikhote Alin and South Kuriles, wild and cultivated plants were collected in three phenological stages: vegetation, flowering/start of fructification, and preparation for withering. By means of HPLC with UV and mass selective detection, 15 polyphenol compounds were detected in methanol extracts from the leaves. Several new compounds—coumaric acid glycoside, quercetin glycoside and rutinoside, and acacetin coumaroylglycoside—were identified in D. charkeviczii. Synthesis of most flavonoids was found to be the highest in the beginning of the vegetation period, and gradually decreased by its end. The concentration of caffeic acid derivatives (chlorogenic acid, rosmarinic acid glycoside, and dehydrorhabdosiin) increased, but the total concentration of compounds decreased by the end of vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Horn, T., Völker, J., Rühle, M., Häser, A., Jürges, G., and Nick, P., Genetic authentication by RFLP versus ARMS? The case of Moldavian dragonhead (Dracocephalum moldavica L.), Eur. Food Res. Technol., 2014, vol. 238, p. 93.

    Article  CAS  Google Scholar 

  2. Kakasy, A., Füzfai, Z., Kursinszki, L., Molnár-Perl, I., and Lemerkovics, É., Analysis of nonvolatile constituens in Dracocephalum species by HPLC and GC-MS, Chromatographia, 2006, vol. 63, p. S17. https://doi.org/10.1365/s10337-006-0741-x

    Article  CAS  Google Scholar 

  3. Bulgakov, V.P., Inyushkina, Y.V., and Fedoreyev, S., Rosmarinic acid and its derivatives: biotechnology and applications, Crit. Rev. Biotechnol., 2012, vol. 32, p. 203. https://doi.org/10.3109/07388551.2011.596804

  4. Petersen, M. and Simmonds, M.S.J., Rosmarinic acid, Phytochem., 2003, vol. 62, p. 121. https://doi.org/10.1016/S0031-9422(02)00513-7

    Article  CAS  Google Scholar 

  5. Zeng, Q., Jin, H.Z., Quin, J.J., Fu, J.J., Hu, X.J., Liu, J.H., Yan, L., Chen, M., and Zhang, W.D., Chemical constituents of plants from the genus Dracocephalum, Chem Biodivers., 2010, vol. 7, p. 1911. https://doi.org/10.1002/cbdv.200900188

  6. Weremczuk-Jeżyna, I., Kuźma, Ł., Kiss, A.K., and Grzegorczyk-Karolak, I., Effect of cytokinins on shoots proliferation and rosmarinic and salvianolic acid B production in shoot culture of Dracocephalum forrestii W.W. Smith, Acta Physiol. Plant., 2018, vol. 40, p. 1. https://doi.org/10.1007/s11738-018-2763-z

    Article  CAS  Google Scholar 

  7. Li, G.S., Jiang, W.I., Tian, J.W., Qu, G.W., Zhu, H.B., and Fu, F.H., In vitro band in vivo antifibrotic effects of rosmarinic acid on experimental liver fibrosis, Phytomedicine, 2010, vol. 17, p. 282. https://doi.org/10.1016/j.phymed.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  8. Inyunshina, Y.V., Bulgakov, V.P., Veselova, M.V., Bryukhanov, V.M., Zverev, Y.F., Lampatov, V.V., Azarova, O.V., Tchemoded, G.K., Fedoreyev, S.A., and Zhuravlev, Y.N., High rabdosin and rosmarinic acid production in Eritrichium sericeum callus cultures and the effect of the calli on Masugi-nephritis in rats, Biosci. Biotechnol. Biochem., 2007, vol. 71, p. 1286. https://doi.org/10.1271/bbb60684

    Article  Google Scholar 

  9. Jaiong, R.W., Lou, K.M., Hon, P.M., Mak, T.C., Woo, K.S., and Fung, K.P., Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza, Curr. Med. Chem., 2005, vol. 12, p. 237. https://doi.org/10.2174/0929867053363397

    Article  Google Scholar 

  10. Hosni, K, Msaada, K, Ben Taârit, M, and Marzouk, B., Phenological variations of secondary metabolites from Hypericum triquetrifolium Turra., Biochem. Syst. Ecol., 2011, vol. 39, p. 43. https://doi.org/10.1016/j.bse.2011.01.001

    Article  CAS  Google Scholar 

  11. Jordán, M.J., Martínez, R.M., Goodner, K.L., Baldwin, E.A., and Sotomayor, J.A., Seasonal variation of Thymus hyemalis Lange and Spanish Thymus vulgaris L. essential oils composition, Ind. Crop Prod., 2006, vol. 24, p. 253–263. https://doi.org/10.1016/j.indcrop.2006.06.011

    Article  CAS  Google Scholar 

  12. Ebrahimi, N.S., Hadian, J., Mirjalili, M.H., Sonboli, A., and Yousefzadi, M., Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages, Food Chem., 2008, vol. 110, p. 927. https://doi.org/10.1016/j.foodchem.2008.02.083

    Article  CAS  Google Scholar 

  13. Abbasi, N., Fattahi, M., Ghosta, Y., and Sefidkon, F., Volatile compounds and antifungal activity of Dracocephalum moldavica L. at different phenological stages, J. Essent. Oil Res., 2022, vol. 34, p. 87. https://doi.org/10.1080/10412905.2021.1975577

    Article  CAS  Google Scholar 

  14. Kotyuk, L.A., Ivashchenko, I.V., Korablova, O.A., and Rakhmetov, D.B., Impact of climate variability on the duration of phenological quality of Dracocephalum moldavica L. in agroclimatic zones of Polissya and Forest-Steppe in Ukraine, Ukr. J. Ecol., 2021 vol. 11, p. 39. https://doi.org/10.15421/2021_240

    Article  Google Scholar 

  15. Fattahi, M., Bonfill, M., Fattahi, B., Torras-Claveria, L., Sefidkon, F., Cusido, R.M., and Palazon, J., Secondary metabolites profiling of Dracocephalum kotschyi Boiss at three phenological stages using uni-and multivariate methods, J. Appl. Res. Med. Aromat. Plants, 2016, vol. 3, p. 177. https://doi.org/10.1016/j.jarmap.2016.04.002

    Article  Google Scholar 

  16. Mohtashami, S., Babalar, M., and Mirjalili, M.H., Phenological variation in medicinal traits of Dracocephalum moldavica L. (Lamiaceae) under different growing conditions, J. Herbs Spices Med. Plants, 2013, vol. 19, p. 377. https://doi.org/10.1080/10496475.2013.811146

    Article  CAS  Google Scholar 

  17. Nakonechnaya, O.V., Gafitskaya, I.V., Grigorchuk, V.P., Gorpenchenko, T.Y., Bezdelev, A.B., and Zhuravlev, Y.N., Polyphenol composition of Dracocephalum charkeviczii Prob. plants in in situ and in vitro conditions, Russ. J. Plant. Physiol., 2022, vol. 69, p. 27. https://doi.org/10.1134/S1021443722010149

    Article  CAS  Google Scholar 

  18. Bezdelev, A.B. and Bezdeleva, T.A., Zhiznennye formy semennykh rastenii rossiyskogo Dal’nego Vostoka (Life Forms of Seed Plants of the Russian Far East), Vladivostok: Dalnauka, 2006.

    Google Scholar 

  19. Kozhevnikov, A.E., Kozhevnikova, Z.V., Kwak, M., and Lee, B.Y., Illustrated flora of the Primorsky Territory [Russian Far East], National Institute of Biological Resources, Incheon, 2019.

    Google Scholar 

  20. Probatova, N.S., Barkalov, V.Yu., and Nechaev, V.A., Chromosome numbers of vascular plants in the Primorsky Territory: further study, Uch. zap. ZabGU. Ser.: Est. nauki, 2016, vol. 11, no. 1, p. 27.

  21. Weremczuk-Jeżyna, I., Skała, E., Kuźma, Ł., Kiss, A.K., and Grzegorczyk-Karolak, I., The effect of purine-type cytokinin on the proliferation and production of phenolic compounds in transformed shoots of Dracocephalum forrestii, J. Biotechnol., 2019, vol. 306, p. 125. https://doi.org/10.1016/j.jbiotec.2019.09.014

    Article  CAS  PubMed  Google Scholar 

  22. Vassallo, A., Cioffi, G., De Simone, F., Braca, A., Sanogo, R., Vanella, A., Russo, A., and De Tommasi, N., New flavonoid glycosides from Chrozophora senegalensis and their antioxidant activity, Nat. Prod. Commun., 2006, vol. 1, p. 1089. https://doi.org/10.1177/1934578X0600101204

    Article  CAS  Google Scholar 

  23. Holser, R.A., Lipid encapsulated phenolic compounds by fluidization, J. Encapsulation Adsorpt. Sci., 2013, vol. 3, p. 13. https://doi.org/10.4236/jeas.2013.31002

    Article  CAS  Google Scholar 

  24. Bystrom, L.M., Lewis, B.A., Brown, D.L., Rodriguez, E., and Obendorf, R.L., Characterisation of phenolics by LC–UV/Vis, LC–MS/MS and sugars by GC in Melicoccus bijugatus Jacq. “Montgomery” fruits, Food Chem., 2008, vol. 111, p. 1017. https://doi.org/10.1016/j.foodchem.2008.04.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Allen, F., Greiner, R., and Wishart, D., Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification, Metabolomics, 2015, vol. 11, p. 98. https://doi.org/10.1007/s11306-014-0676-4

    Article  CAS  Google Scholar 

  26. Yosr, Z., Hnia, Ch., Rim, T., and Mohamed, B., Changes in essential oil composition and phenolic fraction in Rosmarinus officinalis L. var. typicus Batt. organs during growth and incidence on the antioxidant activity, Ind. Crops Prod., 2013, vol. 43, p. 412. https://doi.org/10.1016/j.indcrop.2012.07.044

    Article  CAS  Google Scholar 

  27. Aziz, E.E., Ezz El-Din, A.A., and Omer, E.A., Quantitative and qualitative changes in essential oil of Dracocephalum moldavica at different growth stages, Int. J. Acad. Res., 2010, vol. 2, p. 198.

    Google Scholar 

  28. Del Bano, M.J., Lorente, J., Castillo, J., Benavente-García, O., Del Rio, J.A., Ortuño, A., Quirin, K.-W., and Gerard, D., Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis antioxidant activity, J. Agric. Food Chem., 2003, vol. 51, p. 4247. https://doi.org/10.1021/jf0300745

    Article  CAS  PubMed  Google Scholar 

  29. Winkel-Shirley, B., Biosynthesis of flavonoids and effects of stress, Curr. Opin. Plant Biol., 2002, vol. 5, p. 218. https://doi.org/10.1016/S1369-5266(02)00256-X

    Article  CAS  PubMed  Google Scholar 

  30. Fattahi, M., Nazeri, V., Torras-Claveria, L., Sefidkon, F., Cusido, R.M., Zamani, Z., and Palazon, J., Identification and quantification of leaf surface flavonoids in wild-growing populations of Dracocephalum kotschyi by LC–DAD–ESI–MS, Food Chem., 2013, vol. 141, p. 139. https://doi.org/10.1016/j.foodchem.2013.03.019

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a state assignment given by the Ministry of Science and Higher Education of the Russian Federation (project no. 121031000144-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Nakonechnaya.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by N. Balakshina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorchuk, V.P., Nakonechnaya, O.V., Grishchenko, O.V. et al. Phenological Fluctuations of Secondary Metabolites in Dracocephalum charkeviczii. Russ J Plant Physiol 70, 173 (2023). https://doi.org/10.1134/S1021443723603129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723603129

Keywords:

Navigation