Skip to main content
Log in

HPLC-MS Analysis of Ginsenosides in Morphogenic Cell Cultures of Ginseng (Panax ginseng C.A. Meyer)

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The composition of triterpene glycosides in different in vitro tissues of cell lines (PgR–rhizogenic and PgG–hemogenic) and roots of ginseng plants (Panax ginseng C.A. Meyer), grown on plantations in Primorsky Krai (Russian Federation) was determined using the HPLC-MS method. More than 60 triterpene glycosides have been detected and characterized. The maximum content of ginsenosides was identified in the leaves of the hemogenic line. The total amount of ginsenosides in the PgG line embryonic tissue was lower compared to all other samples studied mainly due to the amount of protopanaxadiols. In all parts of the PgR line, the content of protopanaxatriol Re was two times higher than in the root of the intact plant. A high content of protopanaxatriols and oleanolic ginsenosides was found in the basal parts of PgR and PgG calli. Thus, morphogenic cell lines not only repeated the pattern of qualitative ginsenosides composition in comparison with individual parts of native roots and leaves but also demonstrated an increase in their diversity and quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Zhuravlev, Yu.N., Tomskikh, A.A., and Gorpenchenko, T.Yu., History and prospects of genetic research of ginseng in the Russian Far East, Vest. DVO RAN, 2022, vol. 4. https://doi.org/10.37102/0869-7698_2022_224_04_9

  2. Chen, W., Balan, P., and Popovich, B.G., Ginsenosides analysis of New Zealand-grown forest Panax ginseng by LC-QTOF-MS/MS, J. Ginseng Res., 2020, vol. 44, p. 552. https://doi.org/10.1016/j.jgr.2019.04.007

    Article  PubMed  Google Scholar 

  3. Yang, Y., Ju, Z., Yang, Y., Zhang, Y., Yang, L., and Wang, Z., Phytochemical analysis of Panax species: a review, J. Ginseng Res., 2021, vol. 45, p. 1. https://doi.org/10.1016/j.jgr.2019.12.009

    Article  PubMed  Google Scholar 

  4. Du, Z., Li, J., Zhang, X., Pei, J., and Huang, L., An integrated LC-MS-based strategy for the quality assessment and discrimination of three Panax species, Molecules, 2018, vol. 23, p. 2988. https://doi.org/10.3390/molecules23112988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, F., Lv, C., Li, Q., Wang, J., Song, D., Liu, P., Zhang, D., and Lu, J., Chemical and bioactive comparison of flowers of Panax ginseng Meyer, Panax quinquefolius L., and Panax notoginseng Burk., J. Ginseng Res., 2017, vol. 41, p. 487. https://doi.org/10.1016/j.jgr.2016.08.008

  6. Lee, J.W., Choi, B.-R., Kim, Y.-C., Choi, D.J., Lee, Y.-S., Kim, G.-S., Baek, N.-I., Kim, S.-Y., and Lee, D.Y., Comprehensive profiling and quantification of ginsenosides in the root, stem, leaf, and berry of Panax ginseng by UPLC-QTOF/MS, Molecules, 2017, vol. 22, p. 2147. https://doi.org/10.3390/molecules22122147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, J., Han, H., Yuan, X., Park, E., Lee, J., and Kim, J. H., A rapid, simultaneous and quantitative analysis of 26 ginsenosides in white and red Panax ginseng using LC-MS/MS, Appl. Biol. Chem., 2021, vol. 64, p. 13. https://doi.org/10.1186/s13765-020-00588-w

    Article  CAS  Google Scholar 

  8. Di, P., Yan, Y., Wang, P., Yan, M., Wang, Y.-P., and Huang, L.-Q., Integrative SMRT sequencing and ginsenoside profiling analysis provide insights into the biosynthesis of ginsenoside in Panax quinquefolium, Chin. J. Nat. Med., 2022, vol. 20, p. 614. https://doi.org/10.1016/S1875-5364(22)60198-5

    Article  CAS  PubMed  Google Scholar 

  9. Gantait, S., Mitra, M., and Chen, J.-T., Biotechnological interventions for ginsenosides production, Biomolecules, 2020, vol. 10, p. 538. https://doi.org/10.3390/biom10040538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, F., Valappil, A.K., Mathiyalagan, R., Tran, T.N.A., Ramadhania, Z.M., Awais, M., and Yang, D.C., In vitro cultivation and ginsenosides accumulation in Panax ginseng: a review, Plants, 2023, vol. 12, p. 3165. https://doi.org/10.3390/plants12173165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nosov, A.M., Popova, E.V., and Kochkin, D.V., Isoprenoid production via plant cell cultures: biosynthesis, accumulation and scaling-up to bioreactors, In: Production of biomass and bioactive compounds using bioreactor technology, Paek, K.Y., Murthy, H., and Zhong, J.J., Eds., Dordrecht: Springer-Verlag, 2014, p. 563. https://doi.org/10.1007/978-94-017-9223-3_23

    Book  Google Scholar 

  12. Atanasov, A.G., Waltenberger, B., Pferschy-Wenzig, E.M., Linder, T., Wawrosch, C., Uhrin, P., and Stuppner, H., Discovery and resupply of pharmacologically active plant-derived natural products: a review, Biotechnol. Adv., 2015, vol. 33, p. 1582. https://doi.org/10.1016/j.biotechadv.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakonechnaya, O.V., Gafitskaya, I.V., Grigorchuk, V.P., Gorpenchenko, T.Y., Bezdelev, A. B., and Zhuravlev, Y. N., Polyphenol composition of Dracocephalum charkeviczii Prob. plants in in situ and in vitro conditions, Russ. J. Plant Physiol., 2022, vol. 69, p. 27. https://doi.org/10.1134/S1021443722010149

    Article  CAS  Google Scholar 

  14. Kochkin, D.V., Galishev, B.A., Glagoleva, E.S., Titova, M.V., and Nosov, A.M., Rare triterpene glycoside of ginseng (ginsenoside malonyl-Rg 1) detected in plant cell suspension culture of Panax japonicus var. repens, Russ. J. Plant Physiol., 2017, vol. 64, p. 649. https://doi.org/10.1134/S102144371705003X

    Article  CAS  Google Scholar 

  15. Glagoleva, E.S., Konstantinova, S.V., Kochkin, D.V., Ossipov, V., Titova, M.V., Popova, E.V., Nosov, A.M., and Paek, K.Y., Predominance of oleanane-type ginsenoside R0 and malonyl esters of protopanaxadiol-type ginsenosides in the 20-year-old suspension cell culture of Panax japonicus C.A. Meyer, Ind. Crops Prod., 2022, vol. 177, p. 552114417 https://doi.org/10.1016/j.indcrop.2021.114417

    Article  CAS  Google Scholar 

  16. Wu, J. and Zhong, J.-J., Production of ginseng and its bioactive components in plant cell culture: Current technological and applied aspects, J. Biotechnol., 1999, vol. 68, p. 89. https://doi.org/10.1016/s0168-1656(98)00195-3

    Article  CAS  PubMed  Google Scholar 

  17. Kochkin, D.V., Glagoleva, E.S., Galischev, B.A., Spiridovich, E.V., Nosov, A.M., and Reshetnikov, V.N., Analysis of gynzenosides in the roots of Panax ginseng introduced in the central botanical garden of NAS of Belarus, Dokl Nat, Ak. N. Bel., 2018, vol. 62, p. 447. https://doi.org/10.29235/1561-8323-2018-62-4-447-454

    Article  Google Scholar 

  18. Baleev, D.N., Osipov, V.I., Savin, P.S., Baykova, Yu.P., and Sidelnikov, N.I., Comparative analysis of the composition and content of ginsenosides in callus cell culture and root of Panax ginseng, Biotekh., 2022, vol. 38, no. 2, p. 57. https://doi.org/10.56304/S0234275822020028

    Article  Google Scholar 

  19. Song, X., Wu, H., Piao, X., Yin, Z., and Yin, Ch., Microbial transformation of ginsenosides extracted from Panax ginseng adventitious roots in an airlift bioreactor, Electron. J. Biotechnol., 2017, vol. 26, p. 20. https://doi.org/10.1016/j.ejbt.2016.12.005

    Article  Google Scholar 

  20. Zhuravlev, Yu.N., Getmanova, E.S., Muzarok, T.I., and Bulgakov, V.P., RF patent SU1824114A1, 1993.

  21. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with Tobacco tissue cultures, Physiol. Plant, 1962, vol. 15, p. 473. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  22. Zhinkina, N.A. and Voronova, O.N., To the technique of staining embryological preparations, Bot. zh., 2000, vol. 85, p. 168.

    Google Scholar 

  23. Gorpenchenko, T.Y., Kiselev, K.V., Bulgakov, V.P., Tchernoded, G.K., Bragina, E.A., Khodakovskaya, M.V., Koren, O.G., Batygina, T.B., and Zhuravlev, Y.N., The Agrobacterium rhizogenes rolC-gene-induced somatic embryogenesis and shoot organogenesis in Panax ginseng transformed calluses, Planta, 2006, vol. 223, p. 457. https://doi.org/10.1007/s00425-005-0102-2

    Article  CAS  PubMed  Google Scholar 

  24. Uvarova, N.I., Makhankov, V.V., Malinovskaya, G.V., Samoshina, N.F., Atopkina, L.N., Likhatskaya, G.N., Kim, N.Yu., Anisimov, M.M., and Elyakov, G.B., Chemical characterization, comparative quantitation and biological activity of triterpene glycosides from wild and plantation of Panax ginseng C.A. Meyer, growing in the Primorsky Territory, Khim-farm. zh., 2000, vol. 34, p. 19.

  25. Makhankov, V.V., Burundukova, O.L., Muzarok, T.I., Uvarova, N.I., and Zhuravlev, Yu.N., Content of ginsenosides in the leaves of Panax ginseng C.A. Meyer depending on age and growing conditions, Rast. res., 2007, vol. 3, p. 107.

  26. Chen, Y., Zhao, Z., Chen, H., Yi, T., Qin, M., and Liang, Z., Chemical differentiation and quality evaluation of commercial asian and american ginsengs based on a UHPLC–QTOF/MS/MS metabolomics approach, Phytochem. Anal., 2015, vol. 26, p. 145. https://doi.org/10.1002/pca.2546

    Article  CAS  PubMed  Google Scholar 

  27. Qiu, S., Yang, W.Z., Shi, X.J., Yao, C.L., Yang, M., Liu, X., Jiang, B.-H., Wu, W.-Y., and Guo, D.A., A green protocol for efficient discovery of novel natural compounds: characterization of new ginsenosides from the stems and leaves of Panax ginseng as a case study, Anal. Chim. Acta, 2015, vol. 893, p. 65. https://doi.org/10.1016/j.aca.2015.08.048

    Article  CAS  PubMed  Google Scholar 

  28. Wang, H.P., Zhang, Y.B., Yang, X.W., Zhao, D.Q., and Wang, Y.P., Rapid characterization of ginsenosides in the roots and rhizomes of Panax ginseng by UPLC-DAD-QTOF-MS/MS and simultaneous determination of 19 ginsenosides by HPLC-ESI-MS, J. Ginseng Res., 2016, vol. 40, p. 382. https://doi.org/10.1016/j.jgr.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  29. Minh Duc, N., Thoi Nham, N., Kasai, R., Ito, A., Yamasaki, K., and Tanaka, O., Saponins from Vietnamese ginseng, Panax vietnamensis HA et GRUSHV. Collected in Central Vietnam. I., Chem. Pharm. Bull., 1993, vol. 41, p. 2010. https://doi.org/10.1248/cpb.41.2010

    Article  Google Scholar 

  30. Dictionary of food compounds additives, flavors, and ingredient, Yannai, Sh., Ed., 2004, Washington, D.C: A CRC Press Company Boca Raton.

  31. Van Le, T.H., Lee, G.J., Vu, H.K.L., Kwon, S.W., Nguyen, N.K., Park, J.H., and Nguyen, M.D., Ginseng saponins in different parts of Panax vietnamensis, Chem. Pharm. Bull., 2015, vol. 63, p. 950. https://doi.org/10.1248/cpb.c15-00369

    Article  CAS  Google Scholar 

  32. Peng, M., Zhang, T., Ding, Y., Yi, Y., Yang, Y., and Le, J., Structure-based prediction of CAD response factors 1 of dammarane-type tetracyclic triterpenoid saponins and its application to the analysis of saponin contents in raw and processed Panax notoginseng, RSC Adv., 2016, vol. 6, p. 36987. https://doi.org/10.1039/C6RA03193E

    Article  CAS  ADS  Google Scholar 

  33. Wang, H.-P., Wang, Z.-J., Du, J., Lin, Z.-Z., Zhao, C., Zhang, R., Yin, Q., Fan, C.-L., Peng, P., and Wang, Z.-B., Comprehensive identification of ginsenosides in the roots and rhizomes of Panax ginseng based on their molecular features-oriented precursor ions selection and targeted MS/MS analysis, Molecules, 2023, vol. 28, p. 941. https://doi.org/10.3390/molecules28030941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oh, J.Y., Kim, Y.J., Jang, M.G., Joo, S.C., Kwon, W.S., Kim, S.Y., Jung, S.-K., and Yang, D.C., Investigation of ginsenosides in different tissues after elicitor treatment in Panax ginseng, J. Ginseng Res., 2014, vol. 38, p. 270. https://doi.org/10.1016/j.jgr.2014.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rahimi, S., Kim, Y.J., and Yang, D.C., Production of ginseng saponins: elicitation strategy and signal transductions, Appl. Microbiol. Biotechnol., 2015, vol. 99, p. 6987.

    Article  CAS  PubMed  Google Scholar 

  36. Chopra, P., Chhillar, H., Kim, Y.J., Jo, I.H., Kim, S.T., and Gupta, R., Phytochemistry of ginsenosides: recent advancements and emerging roles, Crit. Rev. Food Sci. Nutr., 2023, vol. 63, p. 613. https://doi.org/10.1080/10408398.2021.1952159

    Article  PubMed  Google Scholar 

  37. Moses, T., Papadopoulou, K.K., and Osbourn, A., Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives, Crit. Rev. Biochem. Mol. Biol., 2014, vol. 40, p. 439. https://doi.org/10.3109/10409238.2014.953628

    Article  CAS  Google Scholar 

  38. Fehér, A., Callus, dedifferentiation, totipotency, somatic embryogenesis: what these terms mean in the era of molecular plant biology?, Front. Plant Sci., 2019, vol. 10, p. 536. https://doi.org/10.3389/fpls.2019.00536

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang, Y., Ju, Z., Yang, Y., Zhang, Y., Yang, L., and Wang, Z., Phytochemical analysis of Panax species: a review, J. Ginseng Res., 2021, vol. 45, p. 1. https://doi.org/10.1016/j.jgr.2019.12.009

    Article  PubMed  Google Scholar 

  40. Yao, C.L., Pan, H.Q., Wang, H., Yao, S., Yang, W.Z., Hou, J.J., Jin, Q.H., Wu, W.Y., and Guo, D.A., Global profiling combined with predicted metabolites screening for discovery of natural compounds: characterization of ginsenosides in the leaves of Panax notoginseng as a case study, J. Chromatogr., 2018, vol. 1538, p. 34. https://doi.org/10.1016/j.chroma.2018.01.040

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We used the equipment of the Center for Collective Use “Biotechnology and Genetic Engineering” of the Federal Scientific Center of the East Asia Terrestrial Biodiversity (Far Eastern Branch, Russian Academy of Sciences).

Funding

The work was carried out with financial support from the Russian Science Foundation grant no. 23-26-00213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Gorpenchenko.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorpenchenko, T.Y., Grigorchuk, V.P., Makhankov, V.V. et al. HPLC-MS Analysis of Ginsenosides in Morphogenic Cell Cultures of Ginseng (Panax ginseng C.A. Meyer). Russ J Plant Physiol 70, 172 (2023). https://doi.org/10.1134/S1021443723603087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723603087

Keywords:

Navigation