Skip to main content
Log in

Responses of Tomato and Eggplant to Abnormal Light/Dark Cycles and Continuous Lighting

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Tomato and eggplant are the most sensitive to continuous lighting (CL) crops. The responses of tomato and eggplant to CL and abnormal light/dark (L/D) cycles were studied in order to elucidate the reason for CL-induced leaf injuries. Four light treatments were set: 16/8 h (control), 24/0 h (CL), 6/6 h, and 24/24 h (abnormal L/D cycles). These light treatments provided average daily light integrals (DLI) of 17.3, 25.9, 13.0 and 13.0 mol/(m2 day), respectively. The obtained results have shown that in both tomato and eggplant abnormal L/D cycles caused photoinhibition and leaf injuries similar to those in CL-grown plants. The induced defense mechanisms were not strong enough to contend against oxidative stress caused by abnormal L/D cycles, despite the fact that they provided plants with an even lower DLI than the 16/8 h photoperiod. Abnormal L/D cycles were injurious, while dark periods made up half the time. It is concluded that photooxidative stress induced by CL is not solely due to excessive DLI or to the continuity of light itself (the absence of dark periods). Therefore, we hypothesize that circadian asynchrony is possibly the main factor triggering CL-induced leaf injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Arthur, J.M., Guthrie, J.D., and Newell, J.M., Some effects of artificial climates on the growth and chemical composition of plants, Amer. J. Bot., 1930, vol. 17, p. 416. https://doi.org/10.2307/2435930

    Article  CAS  Google Scholar 

  2. Withrow, A.P. and Withrow, R.B., Photoperiodic chlorosis in tomato, Plant Physiol., 1949, vol. 24, p. 657. https://doi.org/10.1104/pp.24.4.657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hillman, W.S., Injury of tomato plants by continuous light and unfavorable photoperiodic cycles, Am. J. Bot., 1956, vol. 43, p. 89. https://doi.org/10.2307/2438816

    Article  Google Scholar 

  4. Arthur, J.M., Plant growth in continuous illumination, in Biological Effects of Radiation, Duggar, B.M., Ed., New York: McGraw-Hill Book Company, 1936, vol. 2, p. 715.

    Google Scholar 

  5. Murage, E.N., Watashiro, N., and Masuda, M., Influence of light quality, PPFD and temperature on leaf chlorosis of eggplants grown under continuous illumination, Sci. Hortic., 1997, vol. 68, p. 73. https://doi.org/10.1016/S0304-4238(96)00930-2

    Article  CAS  Google Scholar 

  6. Sysoeva, M.I., Markovskaya, E.F., and Shibaeva, T.G., Plants under continuous light: a review, Plant Stress, 2010, vol. 4, p. 5.

    Google Scholar 

  7. Velez-Ramirez, A.I., van Ieperen, W., Vreugdenhil, D., and Millenaar, F.F., Plants under continuous light, Trends Plant Sci., 2011, vol. 16, p. 310. https://doi.org/10.1016/j.tplants.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  8. Liu, W., Zha, L., and Zhang, Y., Growth and nutrient element content of hydroponic lettuce are modified by LED continuous lighting of different intensities and spectral qualities, Agronomy, 2020, vol. 10, p. 1678. https://doi.org/10.3390/agronomy10111678

    Article  CAS  Google Scholar 

  9. Velez-Ramirez, A.I., Heuvelink, E., van Ieperen, W., Vreugdenhil, D., and Millenaar, F., Continuous light as a way to increase greenhouse tomato production: expected challenges, ISHS Acta Hortic., 2012, vol. 956, p. 51. https://doi.org/10.17660/ActaHortic.2012.956.3

    Article  Google Scholar 

  10. Koontz, H.V. and Prince, R.P., Effect of 16 and 24 hours daily radiation (light) on lettuce growth, Hort. Sci., 1986, vol. 21, p. 123.

    CAS  Google Scholar 

  11. Hao, X., Guo, X., Lanoue, J., Zhang, Y., Cao, R., Zheng, J., Little, C., Leonardos, D., Kholsa, S., Grodzinski, B., and Yelton, M., A review on smart application of supplemental lighting in greenhouse fruiting vegetable production, Acta Hortic., 2018, vol. 1227, p. 499. https://doi.org/10.17660/ActaHortic.2018.1227.63

  12. Lanoue, J., Zheng, J., Little, C., Thibodeau, A., Grodzinski, B., and Hao, X., Alternating red and blue light-emitting diodes allows for injury-free tomato production with continuous lighting, Front. Plant Sci., 2019, vol 10, p. 1114. https://doi.org/10.3389/fpls.2019.01114

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kitaya, Y., Niu, G., Kozai, T., and Ohashi, M., Photosynthetic photon flux, photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants, Hort. Sci., 1998, vol. 33, p. 988. https://doi.org/10.21273/HORTSCI.33.6.988

    Article  Google Scholar 

  14. Ohyama, K., Omura, Y., and Kozai, T., Effects of air temperature regimes on physiological disorders and floral development of tomato seedlings grown under continuous light, Hort. Sci., 2005, vol. 40, p. 1304.

    Google Scholar 

  15. Matsuda, R., Ozawa, N., and Fujiwara, K., Leaf photosynthesis, plant growth, and carbohydrate accumulation of tomato under different photoperiods and diurnal temperature differences, Sci. Hortic., 2014, vol. 170, p. 150. https://doi.org/10.1016/j.scienta.2014.03.014

    Article  CAS  Google Scholar 

  16. Shibaeva, T.G., Mamaev, A.V., Sherudilo, E.G., and Titov, A.F., The role of photosynthetic daily light integral in plant response to extended photoperiods, Russ. J. Plant Physiol., 2022, vol. 69, p. 7. https://doi.org/10.1134/S1021443722010216

    Article  CAS  Google Scholar 

  17. Zhou, W.L., Liu, W.K., and Yang, Q.C., Quality changes of hydroponic lettuce under pre-harvest short-term continuous light with different intensities, J. Hortic. Sci. Biotechnol., 2012, vol. 87, p. 429. https://doi.org/10.1080/14620316.2012.11512890

    Article  CAS  Google Scholar 

  18. Bian, Z.-H., Cheng, R.-F., Yang, Q.-C., Wang, J., and Lu, C., Continuous light from red, blue, and green light-emitting diodes reduces nitrate content and enhances phytochemical concentrations and antioxidant capacity in lettuce, J. Amer. Soc. Hort. Sci., 2016, vol. 141, p. 186. https://doi.org/10.21273/JASHS.141.2.186

    Article  CAS  Google Scholar 

  19. Zhou, W., Wenke, L., and Qichang, Y., Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light-emitting diodes, J. Plant Nutr., 2013, vol. 36, p. 481. https://doi.org/10.1080/01904167.2012.748069

    Article  CAS  Google Scholar 

  20. Shibaeva, T.G., Rubaeva, A.A., Sherudilo, E.G., and Titov, A.F., Continuous lighting increases yield and nutritional value and decreases nitrate content in Brassicaceae microgreens, Russ. J. Plant Physiol., 2022, vol. 11, p. 176. https://doi.org/10.1134/S1021443723601337

    Article  CAS  Google Scholar 

  21. Zha, L., Liu, W., Zhang, Y., Zhou, C., and Shao, M., Morphological and physiological stress responses of lettuce to different intensities of continuous light, Front. Plant Sci., 2019, vol. 10, p. 1440. https://doi.org/10.3389/fpls.2019.01440

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wheeler, R.M. and Tibbitts, T.W., Utilization of potatoes for life support systems in space. I. Cultivar-photoperiod interaction, Am. Potato J., 1986, vol. 63, p. 315. https://doi.org/10.1007/BF02854441

    Article  CAS  PubMed  Google Scholar 

  23. Hague, M.S., Kjaer, K.H., Rosenqvist, E., and Ottosen C.-O., Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species, Front. Plant Sci., 2015, vol. 6, p. 522. https://doi.org/10.3389/fpls.2015.00522

    Article  Google Scholar 

  24. Haque, M.S., Kjaer, K.H., Rosenqvist, E., and Ottosen, C.-O., Recovery of tomato (Solanum lycopersicum L.) leaves from continuous light induced injury, J. Plant Physiol., 2015, vol. 185, p. 24. https://doi.org/10.1016/j.jplph.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  25. Velez-Ramirez, A.I., Dünner-Planella, G., Vreugdenhil, D., Millenaar, F.F., and van Ieperen, W., On the induction of injury in tomato under continuous light: Circadian asynchrony as the main triggering factor, Funct. Plant Biol., 2017, vol. 6, p. 597. https://doi.org/10.1071/FP16285

    Article  Google Scholar 

  26. Shibaeva, T.G., Mamaev, A.V., and Titov, A.F., Possible physiological mechanisms of leaf photodamage in plants grown under continuous lighting, Russ. J. Plant Physiol., 2023, vol. 70, p. 15. https://doi.org/10.1134/S1021443722602646

    Article  CAS  Google Scholar 

  27. Murage, E.N. and Masuda, M., Response of pepper and eggplant to continuous light in relation to leaf chlorosis and activities of antioxidative enzymes, Sci. Hortic., 1997, vol. 70, p. 269. https://doi.org/10.1016/S0304-4238(97)00078-2

    Article  CAS  Google Scholar 

  28. Hague, M., de Sousa, A., Soares, C., Kjaer K.H., Fidalgo, F., Rosenqvist, E., and Ottosen, C.-O., Temperature variation under continuous light restores tomato leaf photosynthesis and maintains the diurnal pattern in stomatal conductance, Front. Plant Sci., 2017, vol. 8, p. 1602. https://doi.org/10.3389/fpls.2017.01602

    Article  Google Scholar 

  29. Highkin, H.R. and Hanson, J.B., Possible interaction between light-dark cycles and endogenous daily rhythms on the growth of tomato plants, Plant Physiol., 1954, vol. 29, p. 301. https://doi.org/10.1104/pp.29.3.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lichtenthaler, H.K. and Wellburn, A.R., Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents, Biochem. Soc. Trans., 1983, vol. 603, p. 591.

    Article  Google Scholar 

  31. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, p. 350.

    Article  CAS  Google Scholar 

  32. Shibaeva, T.G., Mamaev, A.V., and Sherudilo, E.G., Evaluation of a SPAD-502 PLUS chlorophyll meter to estimate chlorophyll content in leaves with interveinal chlorosis, Russ. J. Plant Physiol., 2020, vol. 67, p. 690. https://doi.org/10.1134/S1021443720040160

    Article  CAS  Google Scholar 

  33. Kang, J.H., Sugumaran, K., Atulba, S.L.S., Jeong, B.R., and Hwang, S.J., Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system, Hort. Environ. Biotechnol., 2013, vol. 54, p. 501. https://doi.org/10.1007/s13580-013-0109-8

    Article  CAS  Google Scholar 

  34. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, p. 189. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  35. Velikova, V., Yordanov, I., and Edreva, A., Oxidative stress and some antioxidant system in acid rain-treated bean plants: Protective role of exogenous polyamines, Plant Sci., 2000, vol. 151, p. 59. https://doi.org/10.1016/S0168-9452(99)00197-1

    Article  CAS  Google Scholar 

  36. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, p. 205. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  37. Aebi, H., Catalase in vitro, Meth. Enzymol., 1984, vol. 105, p. 121. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  Google Scholar 

  38. Giannopolitis, C.N. and Ries, S.K., Superoxide dismutases: I. Occurrence in higher plants, Plant Physiol., 1977, vol. 59, p. 309. https://doi.org/10.1104/pp.59.2.309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakano, Y. and Asada K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, p. 867. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  40. Maehly, A.C., The assay of catalases and peroxidases, Meth. Biochem. Anal., 1954, vol. 1, p. 357. https://doi.org/10.1002/9780470110171.ch14

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was carried out using the equipment of the Core Facility of the Karelian Research Centre of the Russian Academy of Sciences.

Funding

Support for this study was provided by the Russian Science Foundation (RSF, funding number 23-16-00160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Shibaeva.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: CL—continuous lighting; DLI—daily light integral; L/D—light/dark.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibaeva, T.G., Mamaev, A.V., Sherudilo, E.G. et al. Responses of Tomato and Eggplant to Abnormal Light/Dark Cycles and Continuous Lighting. Russ J Plant Physiol 71, 12 (2024). https://doi.org/10.1134/S1021443723602951

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723602951

Keywords:

Navigation