Skip to main content
Log in

Organic Compounds in Biochar Stimulate Arabidopsis Flowering

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Biochar can affect plant growth and development, but how biochar affects flowering is unknown. To study the effects of biochar in soil on Arabidopsis (Arabidopsis thaliana L. (Heynh.)) flowering, rice husk biochar was prepared at three pyrolysis temperatures (350, 500, 650°C) and two residence times (1 and 2 h). Nutrient elements and organic compounds were measured in different biochars. Biochar leachates were also obtained. Arabidopsis flowering times, vegetative and reproductive growth, photoperiod pathway and the gibberellin 3 (GA3) pathway-related gene expression, and endogenous GA3 were measured. Different biochars had different types of nutrient elements and organic compounds. Compared without biochar, biochars prepared at higher pyrolysis temperatures (500 and 650°C) and a longer residence time (2 h) led to earlier flowering, increases in vegetative and reproductive growth, higher expression levels of photoperiod and GA3 pathway-related genes, and higher endogenous GA3 content. Arabidopsis treated with biochar prepared at 500°C for 2 h was the first to flower. Biochar leachates had slightly different effects from those of biochar, but those from biochar prepared at 350°C for 1 h and 500°C for 1 or 2 h also promoted flowering. The organic compounds contained in biochar can promote flowering in Arabidopsis. Biochar prepared under different conditions contained different organic compounds and therefore also had different influences on flowering. One of the reasonable mechanisms for biochar-promoted flowering in Arabidopsis was the upregulated expression of downstream gene APETALA1 (AP1) in the photoperiod and the GA3 pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Lehmann, J. and Joseph, S., Biochar for Environmental Management, London: Earthscan Publications, 2015, 2nd ed.

    Book  Google Scholar 

  2. French, E. and Iyer-Pascuzzi, A.S., A role for the gibberellin pathway in biochar-mediated growth promotion, Sci Rep., 2018, vol. 8, p. 5389. https://doi.org/10.1038/s41598-018-23677-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Farhanqi-Abriz, S. and Torabian, S., Effect of biochar on growth and ion contents of bean plant under saline condition, Environ. Sci. Pollut. Res. Int., 2018, vol. 25, p. 1. https://doi.org/10.1007/s11356-018-1446-z

    Article  Google Scholar 

  4. Joseph, S., Pow, D., Dawson, K., Zwieten, L.V., Rust, P., Taherymoosavi, S., Mitchell, D. R. G., Robb, S., and Solaiman, Biochar increases soil organic carbon, avocado yields and economic return over 4 years of cultivation, Sci Total Environ., 2020, vol. 724, p. 138153. https://doi.org/10.1016/j.scitotenv.2020.138153

    Article  CAS  PubMed  Google Scholar 

  5. Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., and Chen, Y., Chemical characterization of rice straw-derived biochar for soil amendment, Biomass Bioenergy., 2012, vol. 47, p. 268. https://doi.org/10.1016/j.biombioe.2012.09.034

    Article  CAS  Google Scholar 

  6. Bian, R., Joseph, S., Shi, W., Li, L., Taherymoosavi, S., and Pan, G., Biochar dom for plant promotion but not residual biochar for metal immobilization depended on pyrolysis temperature, Sci. Total Environ., 2019, vol. 662, p. 571. https://doi.org/10.1016/j.scitotenv.2019.01.224

    Article  CAS  PubMed  Google Scholar 

  7. Pariyar, P., Kumari, K., Jain, M.K, and Jadhao, P.S., Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application, Sci. Total Environ., 2020, vol. 713, p. 136433. https://doi.org/10.1016/j.scitotenv.2019.136433

    Article  CAS  PubMed  Google Scholar 

  8. Chandra, S., and Bhattacharya, J., Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils, J. Clean. Prod., 2019, vol. 215, p. 1123. https://doi.org/10.1016/j.jclepro.2019.01.079

    Article  CAS  Google Scholar 

  9. Tang, J., Zhang, S., Zhang, X., Chen, J., He, X., and Zhang, Q., Effects of pyrolysis temperature on soil-plant-microbe responses to Solidago canadensis L.-derived biochar in coastal saline-alkali soil, Sci. Total Environ., 2020, vol. 731, p. 138938. https://doi.org/10.1016/j.scitotenv.2020.138938

    Article  CAS  PubMed  Google Scholar 

  10. Simpson, G.G., and Dean, C., Arabidopsis, the rosetta stone of flowering time? Science., 2002, vol. 296, p. 285. https://doi.org/10.1126/science.296.5566.285

    Article  CAS  PubMed  Google Scholar 

  11. Pan, R., Xu, L., Wei, Q., Chu, W., Tang, W., Ralf, O., and Zhang, W., Piriformospora indica promotes early flowering in Arabidopsis through regulation of the photoperiod and gibberellin pathways, PLoS One, 2017, vol. 12, p. e0189791. https://doi.org/10.1371/journal.pone.0189791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamaguchi, S., Gibberellin metabolism and its regulation, Annu Rev Plant Biol., 2008, vol. 59, p. 225. https://doi.org/10.1146/annurev.arplant.59.032607.092804

    Article  CAS  PubMed  Google Scholar 

  13. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., and Coupland, G., Photoreceptor regulation of CONSTAN-S protein in photoperiodic flowering, Science, 2004, vol. 303, p. 1003. https://doi.org/10.1126/science.1091761

    Article  CAS  PubMed  Google Scholar 

  14. Yoo, S.K., Chung, K.S., Kim, J., Lee, J.H., Hong, S.M., Yoo, S.J., Yoo, S.Y., Lee, J. S., and Ahn, J. H., CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis, Plant Physiol., 2005, vol. 139, p. 770. https://doi.org/10.1104/pp.105.066928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan, J., Meng, J., Liang, X., E, Y., Yang, X., and Chen, W., Organic molecules from biochar leacheates have a positive effect on rice seedling cold tolerance, 2017, Front. Plant Sci., vol. 8, p. 1624. https://doi.org/10.3389/fpls.2017.01624

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yuan, J., Meng, J., Liang, X., E, Y., and Chen, W.F., Biochar’s leacheates affect the abscisic acid pathway in rice seedlings under low temperature, Front. Plant Sci., 2021, vol. 12, p. 646910. https://doi.org/10.3389/fpls.2021.646910

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gale, N.V., Sackett, T.E., and Thomas, S.C., Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds, Peer J., 2016, vol. 4, p. e2385. https://doi.org/10.7717/peerj.2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. E, Y., Meng, J., Hu, H., and Chen, W., Chemical composition and potential bioactivity of volatile from fast pyrolysis of rice husk, J. Anal. Appl. Pyrolysis, 2015, vol. 112, p. 394. https://doi.org/10.1016/j.jaap.2015.02.021

  19. Ramakers, C., Ruijter, J.M., Deprez, R.H., and Moorman, A.F., Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data, Neurosci Lett., 2003, vol. 339, p. 62. https://doi.org/10.1016/S0304-3940(02)01423-4

    Article  CAS  PubMed  Google Scholar 

  20. Liu, C., Chen, H., Er, H.L., Soo, H.M., Kumar, P.P., Han, J.H., Liou, Y. C., and Yu, H., Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis, Development, 2008, vol. 135, p. 1481. https://doi.org/10.1242/dev.020255

    Article  CAS  PubMed  Google Scholar 

  21. Kant, S., Peng, M., and Rothstein, S.J., Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis, PLoS Genet., 2011, vol. 7, p. e1002021. https://doi.org/10.1371/journal.pgen.1002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, X., and Ludewig, U., Biomass increase under zinc deficiency caused by delay of early flowering in Arabidopsis, J Exp Bot., 2018, vol. 69, p. 1269. https://doi.org/10.1093/jxb/erx478

    Article  CAS  PubMed  Google Scholar 

  23. Gao, L., Bai W., Xia, M., Wan, C., and Gao, J., Diverse effects of nitrogen fertilizer on the structural, pasting, and thermal properties of common buckwheat starch. Int. J. Biol. Macromol., 2021, vol. 179, p. 542. https://doi.org/10.1016/j.ijbiomac.2021.03.045

    Article  CAS  PubMed  Google Scholar 

  24. Cho, L.H., Yoon, J., and An, J., The control of flowering time by environmental factors, Plant J., 2017, vol. 90, p. 708. https://doi.org/10.1111/tpj.13461

    Article  CAS  PubMed  Google Scholar 

  25. Weber, K., and Burow, M., Nitrogen—essential macronutrient and signal controlling flowering time, Physiol. Plant., 2017, vol. 162, p. 251. https://doi.org/10.1111/ppl.12664

    Article  CAS  PubMed  Google Scholar 

  26. Graber, E.R., Harel, Y.M., Kolton, M., Cytryn, E., Silber, A., David, D.R., Tsechansky, L., Borenshtein, M., and Elad, Y., Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media, Plant Soil., 2010, vol. 337, p. 481. https://doi.org/10.1007/s11104-010-0544-6

    Article  CAS  Google Scholar 

  27. Lievens, C., Mourant, D., Gunawan, R., Hu, X., and Wang, Y., Organic compounds leached from fast pyrolysis mallee leaf and bark biochars, Chemosphere, 2014, vol. 139, p. 659. https://doi.org/10.1016/j.chemosphere.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  28. Liu, C., Zhou, J., Bracha-Drori, K., Yalovsky, S., Ito, T., and Yu, H., Specification of Arabidopsis floral meristem identity by repression of flowering time genes, Development, 2007, vol. 134, p. 1901. https://doi.org/10.1242/dev.003103

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Thanks to “Youth Support Project of Liaoning Education Department in 2021”.

Funding

This work was supported by the National Key Research and Development Program of China (2021YFE0192700); the China Postdoctoral Science Foundation (2021M693864); the Liaoning Province Doctoral Research Fund project (2021-BS-141); the Scientific Research Fund of the Education Department of Liaoning Province (LSNJC202020); and Science and Technology Plan Project of Shenyang (22-317-2-08).

Author information

Authors and Affiliations

Authors

Contributions

Jun Yuan, Xu Yang, Jun Meng, Dongxia Yang, and Xiao Liang designed and conducted the experiments; Xu Yang and JunYuan analyzed the data and interpreted the results; Jun Yuan wrote the manuscript.

Corresponding authors

Correspondence to X. Yang or J. Yuan.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants as objects of research.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Abbreviation: SOC1SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1; LFYLEAFY; AP1APETALA1; PHYA—phytochrome A; PHYB—phytochrome B; CRY1—cryptochrome 1; CRY2—cryptochrome 2; CO—CONSTANTS; FT—FLOWERING LOCUS T; FD—FLOWERING LOCUS D; AGL24AGAMOUSLIKE24; GA3GA REQUIRING 3.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Meng, J., Yang, X. et al. Organic Compounds in Biochar Stimulate Arabidopsis Flowering. Russ J Plant Physiol 70, 24 (2023). https://doi.org/10.1134/S1021443722602816

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722602816

Keywords:

Navigation