Skip to main content
Log in

The Tomato WRKY Transcription Factor SlWRKY17 Positively Regulates Drought Stress Tolerance in Transgenic Tobacco Plants

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The WRKY family of transcription factors plays important roles in plant growth, defense regulation, and the stress response. However, in tomato (Lycopersicon esculentum), the WRKY mechanism of drought tolerance has not been described. In this study, we cloned the SlWRKY17 WRKY gene from tomato and induced its expression with PEG6000, NaCl, and abscisic acid (ABA). SlWRKY17 was located in the nucleus. The analysis of yeast transcriptional activity showed that SlWRKY17 may have transcriptional activation activity. Overexpressing SlWRKY17 in tobacco resulted in stronger drought tolerance. After the drought treatment, transgenic plants had higher superoxide dismutase, peroxidase, and catalase activities, as well as ascorbic acid (AsA) protein and relative water contents, but lower malondialdehyde content. In addition, several genes related to the ABA signaling pathway, proline biosynthesis, and the reactive oxygen species scavenging system were significantly upregulated in the transgenic lines. These results show that SlWRKY17 increases drought tolerance in tobacco. These results provide clues for the participation of SlWRKY17 in the regulation of abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Li, J., Besseau, S., Trnen, P., Sipari, N., Kollist, H., Holm, L., and Palva, E.T., Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis, New Phytol., 2013, vol. 200, p. 457. https://doi.org/10.1111/nph.12378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cai, R., Dai, W., Zhang, C., Wang, Y., Wu, M., Zhao, Y., Ma, Q., Xiang, Y., and Cheng, B., The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants, Planta, 2017, vol. 246, p. 1215. https://doi.org/10.1007/s00425-017-2766-9

    Article  CAS  PubMed  Google Scholar 

  3. Ning, W., Zhai, H., Yu, J., Liang, S., Yang, X., Xing, X., Huo, J., Pang, T., Yang, Y., and Bai, X., Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean, Mol. Breed., 2017, vol. 37, p. 19. https://doi.org/10.1007/s11032-016-0614-4

    Article  CAS  Google Scholar 

  4. Babitha, K.C., Ramu, S.V., Pruthvi, V., and Mahesh, P., Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis, Transgenic Res., 2013, vol. 22, p. 327. https://doi.org/10.1007/s11248-012-9645-8

    Article  CAS  PubMed  Google Scholar 

  5. Eulgem, T., Rushton, P.J., Robatzek, S., and Somssich, I.E., The WRKY superfamily of plant transcription factors, Trends Plant Sci., 2000, vol. 5, p. 199. https://doi.org/10.1016/S1360-1385(00)01600-9

    Article  CAS  PubMed  Google Scholar 

  6. Dong. J., Chen. C., and Chen. Z., Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response, Plant Mol. Biol., 2003, vol. 51, p. 21. https://doi.org/10.1023/A:1020780022549

    Article  CAS  PubMed  Google Scholar 

  7. Niu, C.F., Wei, W., Zhou, Q.Y., Tian, A.G., and Chen, S.Y., Wheat WRKY genes TaWRKY2 and TaWRK-Y19 regulate abiotic stress tolerance in transgenic Arabidopsis plants, Plant Cell Environ., 2012, vol. 35, p. 1156. https://doi.org/10.1111/j.1365-3040.2012.02480.x

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, C., Lin, Q., Lan, J., Zhang, T., Liu, X., Miao, R., Mou, C., Nguyen, T., Wang, J., and Zhang, X., WRKY transcription factor OsWRKY29 represses seed dormancy in rice by weakening abscisic acid response, Front. Plant Sci., 2020, vol. 11, p. 691. https://doi.org/10.3389/fpls.2020.00691

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chujo, T., Miyamoto, K., Ogawa, S., Masuda, Y., Shimizu, T., Kishi-Kaboshi, M., Takahashi, A., Nishizawa, Y., Minami, E., and Nojiri, H., Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice, PLoS One, 2014, vol. 9, p. e98737. https://doi.org/10.1371/journal.pone.0098737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shen, H., Liu, C., Zhang, Y., Meng, X., Zhou, X., Chu C., and Wang, X., OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice, Plant Mol. Biol., 2012, vol. 80, p. 241. https://doi.org/10.1007/s11103-012-9941-y

    Article  CAS  PubMed  Google Scholar 

  11. Wang, Y., Li, Y., He, S.P., Gao, Y., Wang, N.N., Lu, R., and Li, X.B., A cotton, Gossypium hirsutum (WRKY transcription factor, GhWRKY22) participates in regulating anther/pollen development, Plant Physiol. Biochem., 2019, vol. 141, p. 231. https://doi.org/10.1016/j.plaphy.2019.06.005

    Article  CAS  PubMed  Google Scholar 

  12. Chen, W., Deng, P., Chen, L., Wang, X., Hui, M., Wei, H., Yao, N., Ying, F., Chai, R., and Yang, G., A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco, PLoS One, 2013, vol. 8, p. e65120. https://doi.org/10.1371/journal.pone.0065120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, Y., Wang, Q., Liu, M.L., Bo, C., Wang, X., Ma, Q., Cheng, B., and Cai, R., Overexpression of a maize MYB48 gene confers drought tolerance in transgenic Arabidopsis plants, J. Plant Biol., 2017, vol. 60, p. 612. https://doi.org/10.1007/s12374-017-0273-y

    Article  CAS  Google Scholar 

  14. Brand, L.H., Fischer, N.M., Klaus, H., Oliver, K., and Dierk, W., Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays, NAR, 2013, vol. 41, p. 9764. https://doi.org/10.1093/nar/gkt732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rushton, P.J., Somssich, I.E., Ringler, P., and Shen, Q.J., WRKY transcription factors, Trends Plant Sci., 2010, vol. 15, p. 247. https://doi.org/10.1016/j.tplants.2010.02.006

    Article  CAS  PubMed  Google Scholar 

  16. Ishiguro, S. and Nakamura, K., Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato, Mol. Gen. Genet., 1994, vol. 244, p. 563. https://doi.org/10.1007/BF00282746

    Article  CAS  PubMed  Google Scholar 

  17. Abbruscato, P., Nepusz, T., Mizzi, L., Del Corvo, M., Morandini, P., Fumasoni, I., Michel, C., Paccanaro, A., Guiderdoni, E., and Schaffrath, U., OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast, Mol. Plant Pathol., 2012, vol. 13, p. 828. https://doi.org/10.1111/j.1364-3703.2012.00795.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong, H., Tan, J., Li, M., Yu, Y., Jia, S., Zhang, C., Wu, Y., and Liu, Y., Transcriptome analysis of soybean WRKY TFs in response to Peronospora manshurica infection, Genomics, 2019, vol. 111, p. 1412. https://doi.org/10.1016/j.ygeno.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  19. Singh, D., Debnath, P., Roohi, Sane, A.P., and Sane, V.A., Expression of the tomato WRKY gene, SlW-RKY23, alters root sensitivity to ethylene, auxin and JA and affects aerial architecture in transgenic Arabidopsis, Physiol. Mol. Biol. Plants, 2020, vol. 26, p. 1187. https://doi.org/10.1007/s12298-020-00820-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, C.T., Ru, J.N., Liu, Y.W., Yang, J.F., Li, M., Xu, Z.S., and Fu, J.D., The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis, Int. J. Mol. Sci., 2018, vol. 19, p. 2580. https://doi.org/10.3390/ijms19092580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He, Z., Zhong, J., Sun, X., Wang, B., Terzaghi, W., and Dai, M., The maize ABA receptors ZmPYL8, 9, and 12 facilitate plant drought resistance, Front. Plant Sci., 2018, vol. 9, p. 422. https://doi.org/10.3389/fpls.2018.00422

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ma, Z., Li, W., Wang, H., and Yu, D., WRKY transcription factors WRKY12 and WRKY13 interact with SPL10 to modulate age-mediated flowering, J. Integr. Plant. Biol., 2020, vol. 69, p. 1659. https://doi.org/10.1111/jipb.12946

  23. Zhang, H., Gao, X., Zhi, Y., Li, X., Zhang, Q., Niu, J., Wang, J., Zhai, H., Zhao, N., and Li, J., A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato, New Phytol., 2019, vol. 223, p. 1918. https://doi.org/10.1111/nph.15925

    Article  CAS  PubMed  Google Scholar 

  24. Xie, L., Yan, T., Li, L., Chen, M., Ma, Y., Hao, X., Fu, X., Shen, Q., Huang, Y., and Qin, W., The WRKY transcription factor AaGSW2 promotes glandular trichome initiation in Artemisia annua, J. Exp. Bot., 2021, vol. 72, p. 1691. https://doi.org/10.1093/jxb/eraa523

    Article  CAS  PubMed  Google Scholar 

  25. Silva-Silva, J.V., Moragas-Tellis, C.J., Chagas, M., Souza, P., Moreira, D.L., Hardoim, D.J., Taniwaki, N.N., Costa, V., Bertho, A.L., and Brondani, D., Carajurin induces apoptosis in Leishmania amazonensis promastigotes through reactive oxygen species production and mitochondrial dysfunction, Pharmaceuticals, 2022, vol. 15, p. 331. https://doi.org/10.3390/ph15030331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhattacharjee, S., Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants, Curr. Sci., 2005, vol. 89, p. 1113. https://doi.org/10.1073/pnas.0506897102

    Article  CAS  Google Scholar 

  27. Choudhury, S., Panda, P., Sahoo, L., and Panda, S.K., Reactive oxygen species signaling in plants under abiotic stress, Plant Signaling Behav., 2013, vol. 8, p. e23681. https://doi.org/10.4161/psb.23681

    Article  CAS  Google Scholar 

  28. Zhi, S., Tang, X., Zheng, Z. N., Xu, F. X., Ren, Y.H., and Wang, X.L., Expression of glutamate dehydrogenase genes of mulberry in Morus alba L. and transgenic tobacco in relation to biotic and abiotic stresses, Russ. J. Plant Physiol., 2020, vol. 67, p. 703. https://doi.org/10.1134/S1021443720040202

    Article  CAS  Google Scholar 

  29. Zhai, H., Wang, F., Si, Z., Huo, J., Xing, L., An, Y., He, S., and Liu, Q., A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato, Plant Biotechnol. J., 2016, vol. 14, p. 592. https://doi.org/10.1111/pbi.12402

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Henan science and Technology Department Foundation Committee, China.

Funding

The study was supported by Science and technology projects, project no. 212102110005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. H. Li or H. Y. Li.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Li, D.H., Li, H.Y. et al. The Tomato WRKY Transcription Factor SlWRKY17 Positively Regulates Drought Stress Tolerance in Transgenic Tobacco Plants. Russ J Plant Physiol 69, 154 (2022). https://doi.org/10.1134/S102144372260177X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S102144372260177X

Keywords:

Navigation