Skip to main content
Log in

Effect of Continuous Lighting on Mitochondrial Respiration in Solanacea Plants

  • RESEARCH ARTICLES
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

We studied the effect of 16- and 24-h photoperiods on mitochondrial respiration in the darkness (RDark), in the light (RLight), their ratio RLight/RDark (reflecting the degree of inhibition of respiration by light), and the ratio of respiration to gross photosynthesis (Ag) in Solanaceae plants: eggplant (Solanum melongena L.), sweet pepper (Capsicum annuum L.), and tomato (Solanum lycopersicum L.). The leaf RLight rate was lower than RDark, regardless of plant species and photoperiod. At a 16-h photoperiod, light inhibited up to 19, 31, and 34% of respiration, respectively, in eggplant, sweet pepper, and tomato. Continuous lighting increased the degree of light inhibition of respiration to 36 and 46% in eggplant and sweet pepper but did not affect this value in tomato. An increase in respiration inhibition could be associated with structural changes in the leaf and a decrease in the oxygenase activity of RuBisCO/O. Continuous lighting reduced Ag to a greater extent than RDark and RLight, reflecting a shift in the carbon balance towards losses. Increase in RDark/Ag and RLight/Ag ratios, due to a significant decrease in the photosynthetic activity with a relative stability of the respiratory metabolism, may reflect the negative effect of continuous lighting on the productivity of the studied species. The obtained results also showed that the photoperiod duration can be one of the environmental factors influencing the degree of light inhibition of respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Murage, E., Masuda, M., Response of pepper and eggplant to continuous light in relation to leaf chlorosis and activities of antioxidative enzymes, Sci Hortic., 1997, vol. 70, p. 269. https://doi.org/10.1016/S0304-4238(97)00078-2

    Article  CAS  Google Scholar 

  2. Sysoeva, M.I., Markovskaya, E.F., and Shibaeva, T.G., Plants under continuous light: a review, Plant Stress, 2010, vol. 4, p. 5.

    Google Scholar 

  3. Velez-Ramirez, A.I., van Ieperen, W., Vreugdenhil, D., Millenaar, F.F., Plants under continuous light, Trends Plant Sci., 2011, vol. 16, p. 310. https://doi.org/10.1016/j.tplants.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  4. Proietti, S., Moscatello, S., Riccio, F., Downey, P., Battistelli, A., Continuous lighting promotes plant growth, light conversion efficiency, and nutritional quality of Eruca vesicaria (L.) Cav. in controlled environment with minor effects due to light quality, Front. Plant Sci., 2021, vol. 12, p. 730119. https://doi.org/10.3389/fpls.2021.730119

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shibaeva, T.G., Mamaev, A.V., Sherudilo, E.G., Ikkonen, E.N., and Titov, A.F. Age-related changes in sensitivity of tomato (Solanum lycopersicum L.) leaves to continuous light, Russ. J. Plant Physiol., 2021, vol. 68, p. 948. https://doi.org/10.1134/S1021443721040154

    Article  CAS  Google Scholar 

  6. Ohyama, K., Manabe, K., Omura, Y., Kozai, T., and Kubota, C., Potential use of a 24-hour photoperiod (continuous light) with alternating air temperature for production of tomato plug transplants in a closed system, Hortic. Sci., 2005, vol. 40, p. 374. https://doi.org/10.21273/HORTSCI.40.2.374

    Article  Google Scholar 

  7. Demers, D.A. and Gosselin, A., Growing greenhouse tomato and sweet pepper under supplemental lighting: optimal photoperiod, negative effects of long photoperiod and their causes, Acta Hortic., 2002, vol. 580, p. 83. https://doi.org/10.17660/ActaHortic.2002.580.9

  8. Ikkonen, E.N., Shibaeva, T.G., Rosenqvist, E., and Ottosen, C.-O., Temperature drop prevents inhibition of photosynthesis in tomato plants under continuous light, Photosynthetica, 2015, vol. 53, p. 389. https://doi.org/10.1007/s11099-015-0115-4

    Article  CAS  Google Scholar 

  9. Semikhatova, O.A., Energetics of plant respiration in normal conditions and under environmental stress, Leningrad: Nauka, 1990, 72 p.

    Google Scholar 

  10. Semikhatova, O.A., Evaluation of plant adaptation potential by assessing dark respiration, Russ. J. Plant Physiol., 1998, vol. 45, p. 122.

    CAS  Google Scholar 

  11. Garmash, E.V. and Golovko, T.K., CO2 gas exchange and growth in Rhaponticum carthamoides under the condition of middle taiga subzone of Northeastern Europe: dependence of photosynthesis and respiration on environmental factors, Russ. J. Plant Physiol., 1997, vol. 44, p. 737.

    CAS  Google Scholar 

  12. Golovko T.K. Dykhanie rastenii (fiziologicheskie aspekty) (Plant respiration (physiological aspects)), St. Petersburg: Nauka, 1999, 204 p.

  13. Wright, I.J., Reich, P.B., Atkin, O.K., Lusk, C.H., Tjoelker, M.G., and Westoby, M., Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites, New Phytol., 2006, vol. 169, p. 309. https://doi.org/10.1111/j.1469-8137.2005.01590.x

    Article  CAS  PubMed  Google Scholar 

  14. Zaragoza-Castells, J., Sanchez-Gomez, D., Valladares, F., Hurry, V., and Atkin, O.K., Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves, Plant Cell Environ., 2007, vol 30, p. 820. https://doi.org/10.1111/j.1365-3040.2007.01672.x

    Article  CAS  PubMed  Google Scholar 

  15. Ikkonen, E.N., Shibaeva, T.G., Titov, A.F., The role of light in cucumber plant response to a diurnal short-term temperature drop, J. Stress Physiol. Biochem., 2017, vol. 13, p. 35.

    CAS  Google Scholar 

  16. Ikkonen, E.N., Shibaeva, T.G., Sherudilo, E.G., Titov, A.F., Response of winter wheat seedlings respiration to long-term cold exposure and short-term daily temperature drops, Russ. J. Plant Physiol., 2020, vol. 67, p. 538. https://doi.org/10.1134/S1021443720020065

    Article  CAS  Google Scholar 

  17. Crous, K.Y., Wallin, G., Atkin, O.K., Uddling, J., A., and af Ekenstam, A., Acclimation of light and dark respiration to experimental and seasonal warming are mediated by changes in leaf nitrogen in Eucalyptus globulus, Tree Physiol., 2017, vol. 37, p. 1069. https://doi.org/10.1093/treephys/tpx052

    Article  CAS  PubMed  Google Scholar 

  18. Turnbull, M.H., Ogaya, R., Barbeta, A., Peñuelas, J., Zaragoza-Castells, J., Atkin, O.K., Valladares, F., Gimeno, T.E., Pías, B., and Griffin, K.L., Light inhibition of foliar respiration in response to soil water availability and seasonal changes in temperature in Mediterranean holm oak (Quercus ilex) forest, Funct. Plant Biol., 2017, vol. 44, p. 1178. https://doi.org/10.1071/FP17032

    Article  PubMed  Google Scholar 

  19. Rakhmankulova, Z.F., Physiological aspects of photosynthesis—respiration interrelation, Russ. J. Plant Physiol., 2019, vol. 66, p. 365. https://doi.org/10.1134/S1021443719030117

    Article  CAS  Google Scholar 

  20. Garmash, E.V., Mitochondrial respiration of the photosynthesizing cell, Russ. J. Plant Physiol., 2016, vol. 63, p. 13. https://doi.org/10.1134/S1021443715060072

    Article  CAS  Google Scholar 

  21. Tcherkez, G., Bligny, R., Gout, E., Mahe, A., Hodges, M., Cornic, G., Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, p. 797. https://doi.org/10.1073/pnas.0708947105

    Article  PubMed  PubMed Central  Google Scholar 

  22. Griffin, K.L. and Turnbull, M.H., Light saturated RuBP oxygenation by Rubisco is a robust predictor of light inhibition of respiration in Triticum aestivum L., Plant Biol., 2013, vol. 15, p. 755. https://doi.org/10.1111/j.1438-8677.2012.00703.x

    Article  CAS  Google Scholar 

  23. Heskel, M.A., Atkin, O.K., Turnbull, M.H., Griffin, K.L., Bringing the Kok effect to light: a review on the integration of daytime respiration and net ecosystem exchange, Ecosphere, 2013, vol. 4, p. 98. https://doi.org/10.1890/ES13-00120.1

    Article  Google Scholar 

  24. Tcherkez, G., Gauthier, P., Buckley, T.N., Busch, F.A., Barbour, M.M., Bruhn, D., Heskel, M.A., Gong, X.Y., Crous, K.Y., Griffin, K., Way, D., Turnbull, M., Mark, A., Adams, M.A., Atkin, O.K., Farquhar, G.D., and Cornic, G., Leaf day respiration: low CO2 flux but high significance for metabolism and carbon balance, New Phytol., 2017, vol. 216, p. 986. https://doi.org/10.1111/nph.14816

    Article  CAS  PubMed  Google Scholar 

  25. Ayub, G., Zaragoza-Castells, J., Griffin, K.L., and Atkin, O.K., Leaf respiration in darkness and in the light under pre-industrial, current and elevated atmospheric CO2 concentrations, Plant Sci., 2014, vol. 226, p. 120. https://doi.org/10.1016/j.plantsci.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  26. Atkin, O.K., Scheurwater, I., and Pons, T.L., High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric, Glob. Change Biol., 2006, vol. 12, p. 500. https://doi.org/10.1111/j.1365-2486.2006.01114.x

    Article  Google Scholar 

  27. Heskel, M.A. and Tang, J., Environmental controls on light inhibition of respiration and leaf and canopy daytime carbon exchange in a temperate deciduous forest, Tree Physiol., 2018, vol. 38, p. 1886. https://doi.org/10.1111/j.1365-2486.2006.01114.x

    Article  CAS  PubMed  Google Scholar 

  28. Way, D.A., Holly, C., Bruhn, D., Ball, M.C., and Atkin, O.W., Diurnal and seasonal variation in light and dark respiration in field-grown Eucalyptus pauciflora, Tree Physiol., 2015, vol. 35, p. 840. https://doi.org/10.1093/treephys/tpv065

    Article  CAS  PubMed  Google Scholar 

  29. Ayub, G., Smith, R.A., Tissue, D.T., and Atkin, O.K., Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature, New Phytol., 2011, vol. 190, p. 1003. https://doi.org/10.1111/j.1469-8137.2011.03673.x

    Article  PubMed  Google Scholar 

  30. Ikkonen, E., Chazhengina, S., Butilkina, M., and Sidorova, V., Physiological response of onion (Allium cepa L.) seedlings to shungite application under two soil water regimes, Acta Physiol. Plant., 2021, vol. 43, p. 76. https://doi.org/10.1007/s11738-021-03239-9

    Article  CAS  Google Scholar 

  31. Bret-Harte, M.S., Shaver, G.R., and Chapin III, F.S., Primary and secondary stem growth in Arctic shrubs: implications for community response to environmental change, J. Ecology, 2002, vol. 90, p. 251. https://doi.org/10.1046/j.1365-2745.2001.00657.x

    Article  Google Scholar 

  32. Kok, B., A critical consideration of the quantum yield of Chlorella-photosynthesis, Enzymologia, 1948, vol. 13, p. 1.

    CAS  Google Scholar 

  33. Farquhar, G.D. and von Caemmerer, S., Modelling of photosynthetic response to environmental conditions, in: Encyclopedia of plant physiology. V. 12B. Physiological plant ecology II. Water relations and carbon assimilation, Lange, O.L. et al., Eds., BeRLightin: Springer, 1982, p. 551. https://doi.org/10.1007/978-3-642-68150-9_17

  34. Atkin, O.W., Westbeek, M.H.M., Cambridge, M.L., Lambers, H., and Pons, T.L., Leaf respiration in light and darkness, Plant Physiol., 1997, vol. 113, p. 961. https://doi.org/10.1104/pp.113.3.961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Atkin, O.K., Turnbull, M.H., Zaragoza-Castells, J., Fyllas, N.M., Lloyd, J., Meir, P., and Griffin, K.L., Light inhibition of leaf respiration as soil fertility declines along a post-glacial chronosequence in New Zealand: an analysis using the Kok method, Plant Soil, 2013, vol. 367, p. 163. https://doi.org/10.1007/s11104-013-1686-0

    Article  CAS  Google Scholar 

  36. Loveys, B.R., Atkinson, L.J., SheRLightock, D.J., Roberts, R.L., Fitter, A.H., and Atkin, O.K., Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species, Glob. Change Biol., 2003, vol. 9, p. 895. https://doi.org/10.1007/s11104-013-1686-0

    Article  CAS  Google Scholar 

  37. Rakhmankulova, Z.F., The relationship between photosynthesis and respiration of the whole plant in normal conditions and under adverse environmental conditions, Zh. Obshch. Biol. 2002, vol. 63, p. 44. https://doi.org/10.1046/j.1365-2486.2003.00611.x

    Article  Google Scholar 

  38. Ikkonen, E.N., Shibaeva, T.G., and Titov, A.F., Influence of daily short-term temperature drops on respiration to photosynthesis ratio in chilling-sensitive plants, Russ. J. Plant Physiol., 2018, vol. 65, p. 78. https://doi.org/10.1134/S1021443718010041

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task of the Karelian Research Center of the Russian Academy of Sciences (no. FMEN-2022-004) and partially supported by the Russian Foundation for Basic Research within the framework of scientific project no. 20-016-00033a. The studies were carried out using the scientific equipment of the Center for Collective Use of the Federal Research Center Karelian Research Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Ikkonen.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

Abbreviations: LCP—light compensation point; LMA—leaf mass per area.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikkonen, E.N., Shibaeva, T.G., Sherudilo, E.G. et al. Effect of Continuous Lighting on Mitochondrial Respiration in Solanacea Plants. Russ J Plant Physiol 69, 114 (2022). https://doi.org/10.1134/S1021443722060139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722060139

Keywords:

Navigation