Skip to main content
Log in

The Effect of Pseudomonas putida and Spermine on Growth and Bioactive Metabolites of Hemerocallis fulva L. Leaves

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The daylily is a perennial monocot herb with significant ornamental value. The daylily is used as food and has medicinal properties. This research was aimed to evaluate the role of Pseudomonas putida and spermine on bioactive metabolites of Hemerocallis fulva L. (daylily). Two years old daylily’s leaves were sprayed with 72 hours old culture of Pseudomonas putida and spermine (10–5 mM) at its vegetative phase. Plants were grown under natural conditions. Six months after treatments, growth, biochemical parameters and, bioactive metabolites viz. phenolics, flavonoids, terpenoids, and phytohormones were determined. Phytohormones indole acetic acid (IAA), and gibberellic acid (GA) contents were analyzed through HPLC. Both spermine and Pseudomonas putida significantly increased the plant’s growth and biochemical content, but P. putida was more effective. Spermine enhanced the number of leaves, GA content, protein, proline, phenolics, flavonoids, fresh and dry weight by 29.03, 15, 22.22, 59.84, 32.21, 38.25, 24.23, 45.58, and 39.29% respectively as compared to control. P. putida showed a similar increase. However, P. putida showed maximum increase in auxin content. The combined treatment of spermine and P. putida showed maximum increase in the growth, GA, protein, proline, phenolics, and terpenoids contents of the plants. The ROS scavenging activity by H. fulva showed different behavior at different concentrations. It is inferred from the present results that combined application of Pseudomonas putida and spermine can be implicated in horticulture and pharmaceutical industries to increase yield and the production of the bioactive metabolites by daylily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Borodich, G.S., The introduction of daylilies (Hemerocallis) in the Central Botanical Garden of NAS of Belarus, Vescì Nacyânalʹnaj akadèmìì navuk Belarusì, 2014, vol. 2014, no.2, p. 17.

  2. Yoshihara, K., Eguchi, N., and Doe, N., Composition containing hot water extract of plant of the genus Hemerocallis and having antidepressant-like effects or fatigue-relieving effects based on sleep improvement, U.S. Patent US-2011076349-A1, 2011.

  3. Zhang, Y., Cichewicz, R.H., and Nair, M.G., Lipid peroxidation inhibitory compounds from daylily (Hemerocallis fulva) leaves, Life Sci., 2004., vol. 75, p. 753.

    Article  CAS  PubMed  Google Scholar 

  4. Liu, L.Y., Chang, L.Y., Chou, S.S., Hsiao, Y.L., and Chien, Y.W., Studies on the antioxidant components and activities of the methanol extracts of commercially grown Hemerocallis fulva L. (Daylily) in Taiwan, J. Food Biochem., 2010, vol. 34, p. 90.

    Article  CAS  Google Scholar 

  5. Li, X., Jiang, S., Cui, J., Qin, X., and Zhang, G., Progress of genus Hemerocallis in traditional uses, phytochemistry, and pharmacology, J. Hort. Sci. and Biotech., 2021, p. 1.

  6. Lin, Y., Dexter, B.W., Joseph, W., Kloepper., A., Adesemoye, O., and Yucheng, F., Effect of plant growth-promoting Rhizobacteria at various nitrogen rates on corn growth, Agric. Sci., 2019, vol. 10, p. 1542.

    CAS  Google Scholar 

  7. Saraf, M., Pandya, U., and Thakkar, A., Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens, Microbiol. Res., 2014, vol. 169, p.18.

    Article  CAS  PubMed  Google Scholar 

  8. Naz, I. and Bano, A., Biochemical, molecular characterization and growth promoting effects of phosphate solubilizing Pseudomonas sp. isolated from weeds grown in salt range of Pakistan, Plant and soil, 2010, vol. 334, p.199.

    Article  CAS  Google Scholar 

  9. Ordookhani, K. and Zare, M., Effect of Pseudomonas, Azotobacter and arbuscular mycorrhiza fungi on lycopene, antioxidant activity and total soluble solid in tomato (Lycopersicon esculentum F1 Hybrid, Delba), Adv. Environ. Biol., 2011, vol. 5, p. 1290.

    Google Scholar 

  10. Ashok, T. and Kalaiarasu, S., Studies on the effect of PGPR cells for the maximization of alkaloid content in Aloe vera, Gold Res. Thoughts, 2014, vol.4, p. 1.

    Google Scholar 

  11. Rademacher, W., Plant growth regulators: backgrounds and uses in plant production, J. Plant Growth Regul., 2015, vol. 34, p. 845.

    Article  CAS  Google Scholar 

  12. Rubio-Rodríguez, E., López-Laredo, A.R., Medina-Pérez, V., Trejo-Tapia, G., and Trejo-Espino, J.L., Influence of spermine and nitrogen deficiency on growth and secondary metabolites accumulation in Castilleja tenuiflora Benth. cultured in a RITA® temporary immersion system, Eng. Life Sci., 2019, vol. 19, p. 944.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pal, M., Szalai, G., and Ajanda, T., Speculation: polyamines are important in abiotic stress signaling, Plant Sci., 2015, vol. 237, p. 16.

    Article  CAS  PubMed  Google Scholar 

  14. Singh, M.C., Singh, K.G, and Singh, J.P., Indirect method for measurement of leaf area and leaf area index of soilless cucumber crop, Adv. Plants Agric. Res., 2018, vol.8, p. 188.

    Google Scholar 

  15. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Arandall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol.193, p. 265.

    Article  CAS  PubMed  Google Scholar 

  16. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol.39, p. 205.

    Article  CAS  Google Scholar 

  17. Barnes, J.D., Balaguer, L., Manrique, E., Elvira, S., and Davison, A.W., A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants, Environ. Exp. Bot., 1992, vol. 32, p. 85.

    CAS  Google Scholar 

  18. Arnon, D.I., Copper enzymes in isolated chloroplasts Polyphenol oxidase in Beta vulgaris, Plant Physiol., 1949, vol. 24, p.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., and Smith, F., Colorimetric method for determination of sugars and related substances, Anal. Chem., 1956, vol. 28, p. 350.

    Article  CAS  Google Scholar 

  20. Ali, N., Shaoib, M., Shah, S.W.A., Shah, I., and Shuaib, M., Pharmacological profile of the aerial parts of Rubus ulmifolius Schott., BMC Complement. Altern. Med., 2017, vol. 1, p. 59.

    Article  Google Scholar 

  21. Singleton, M. and Jones, J.J., Plant Analysis Handbook 2, Athens GA, USA: Micro Macro Publishing Inc, 1999.

    Google Scholar 

  22. Zhishen, J., Mengcheng, T., and Jianming, W., The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chem., 1999, vol. 64, p. 555.

    Article  CAS  Google Scholar 

  23. Kettner, J. and Dorffling, K., Biosynthesis and metabolism of abscisic acid in tomato leaves infected with Botrytis cinerea, Planta, 1995, vol. 196, p. 627.

    Article  CAS  Google Scholar 

  24. Indumathi, C., Durgadevi, G., Nithyavani, S., and Gayathri, P. K., Estimation of terpenoid content and its antimicrobial property in Enicostemmalitorrale, Int. J. Chem. Tech. Res., 2014, vol. 6, p. 4264.

    CAS  Google Scholar 

  25. Gibbs, R.D., Chemotaxonomy of flowering plants, Montreal: McGill-Queen’s Univ. Press, 1974.

    Book  Google Scholar 

  26. Parekh, J. and Chanda, S., Antibacterial and phytochemical studies on twelve species of Indian medicinal plants, Afr. J. Biomed. Res., 2007, vol. 10, p.175.

    Google Scholar 

  27. Rizk, A. and Bashir, M., A chemical survey of sixty plants, Fitoterapia., 1980, vol. 53, p. 35.

    Google Scholar 

  28. Kumar, A., Ilavarasan, R., Jayachandran, T., Decaraman, M., Aravindhan, P., Padmanabhan, N., and Krishnan, M.R.V., Phytochemicals investigation on a tropical plant, Syzygiumcumini from Kattuppalayam, Erode district, Tamil Nadu, South India, Pak. J. Nut., 2009, vol. 8, p. 83.

    Article  Google Scholar 

  29. Minorsky, P.V., On the inside, Plant Physiol., 2008, vol.146, p. 1020.

    Article  CAS  PubMed Central  Google Scholar 

  30. Kavatagi, P.K. and Lakshman, H.C., Interaction between A.M.F and plant growth-promoting rhizobacteria on two varieties of Solanum lycopersicum L., World Appl. Sci. J., 2014, vol. 32, p. 2054.

    Google Scholar 

  31. Kang, S.M., Radhakrishnan, R., Khan, A.L., Kim, M.J., Park, J.M., Kim, B.R., Shin, D.H., and Lee, I.J., Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions, Plant Physiol. Biochem, 2014, vol. 84, p. 115.

    Article  CAS  PubMed  Google Scholar 

  32. Anjum, M.A., Effect of exogenously applied spermidine on growth and physiology of citrus root stock Troyer citrange under saline conditions, Turk. J. Agric. For., 2011, vol. 35, p. 43.

    Google Scholar 

  33. Khan, N., Bano, A., and Zandi, P., Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (Cicer arietinum) and their role in drought tolerance, J. Plant Interact., 2018, vol. 13, p. 239.

    Article  CAS  Google Scholar 

  34. Han, X., Zeng, H., Bartocci, P., Fantozzi, F., and Yan, Y., Phytohormones and effects on growth and metabolites of microalgae: a review, Fermentation., 2018, vol.2, p.25.

    Article  Google Scholar 

  35. Mathivanan, S., Chidambaram, A.A., Robert, A., and Kalaikandhan, G.A., Impact of PGPR inoculation on photosynthetic pigment and protein contents in Arachis hypogea L, J. Sci. Agric., 2017, vol. 1, p.29.

    Google Scholar 

  36. Hassen, A.I and Labuschagne, N., Root colonization and growth enhancement in wheat and tomato by rhizobacteria isolated from the rhizoplane of grasses, World J. Microbiol. Biotechnol., 2010, vol. 26, p. 1837.

    Article  Google Scholar 

  37. Ali, S.Z., Sandhya, V., Grover, M., Linga, V.R., and Bandi, V., Effect of inoculation with a thermo-tolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress, J. Plant Interact., 2011, vol.6, p.239.

    Article  CAS  Google Scholar 

  38. Ansary, M.H, Rahmani, H.A., Ardakani, M.R., Paknejad, F., Habibi, D., and Mafakheri, S., Effect of Pseudomonas fluorescent on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress, Ann. Biol. Res., 2012, vol. 3, p. 1054.

    CAS  Google Scholar 

  39. Sahin, F., Cakmakci, R., and Kantar, F., Sugar beet and barley yields in relation to inoculation an auxin secreting Pseudomonas putida rhizobacterial strain that negatively impacts water-stress tolerance in Arabidopsis thaliana, on with N2-fixing and phosphate solubilizing bacteria, Plant soil., 2004, vol. 265, p.123.

    Article  CAS  Google Scholar 

  40. Shah, D.A., Sen, D., Shalini, A., Ghosh, D., Grover, M., and Mohapatra, S., An auxin secreting Pseudomonas putida rhizobacterial strain that negatively impacts water-stress tolerance in Arabidopsis thaliana, Rhizosphere., 2017, vol. 3, p.16.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to Dr. Syed Waqas Hassan, Chairperson, Department of Biosciences, University of Wah for his cooperation and facilitation. The authors also acknowledge the Lab complex University of Wah Rawalpindi Pakistan for providing technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahnoor Asghari Bano.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any study involving humans or animals.

Additional information

Abbreviations: ABTS—2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid); PGPR—plant growth promoting rhizobacteria; PGR—plant growth regulator.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bano, M., Khan, J. The Effect of Pseudomonas putida and Spermine on Growth and Bioactive Metabolites of Hemerocallis fulva L. Leaves. Russ J Plant Physiol 69, 132 (2022). https://doi.org/10.1134/S1021443722060024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722060024

Keywords:

Navigation