Skip to main content

Advertisement

Log in

Comparison between Photosynthesis and Growth Indicators of C4 and C3 Grasses as Influenced by Wastewater

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The use of treated wastewater is one of the ways to resolve a lack of water concerns. In this study, different responses of two kinds of grasses (C3: Lolium perenne L. and C4: Cynodon dactylon L.) and four levels of wastewater (control, 25, 50, 75, and 100%) were evaluated at morphological and physiological levels. The concentration of Cd, Cr, Ni, As, and Cu elements significantly increased in leaf tissue under the toxic levels of wastewater (100%). The results showed that Pn, Tr, gs, WUEi, and chlorophyll significantly increased when grasses were under 50% wastewater treatment. Plants growth parameters including root, and shoot dry weights exhibited a significant increase under low concentration of wastewater while photosynthetic index and growth parameters showed a high reduction under high wastewater concentration. The results showed that by the handling of wastewater and the utilize of suitable concentrations, this unusual water source can be used for irrigation of grasses that need high water demands such as Lolium perenne and Cynodon dactylon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Khalid, S., Shahid, M.; Natasha, Bibi, I., Sarwar, T., Shah, A., and Niazi, N., A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries, Int. J. Environ. Res. Publ. Health, 2018, vol. 15, p. 895. https://doi.org/10.3390/ijerph15050895

    Article  CAS  Google Scholar 

  2. Banon, S., Miralles, J., Ochoa, J., Franco, J., and Sánchez-Blanco, M., Effects of diluted and undiluted treated wastewater on the growth, physiological aspects and visual quality of potted lantana and polygala plants, Sci. Hortic. (Amsterdam), 2011, vol. 29, p. 869. https://doi.org/10.1016/j.scienta.2011.05.027

    Article  Google Scholar 

  3. JaramilIo, F.M. and Restrepo, I., Wastewater reuse in agriculture: a review about its limitations and benefits, Sustainability, 2017, vol. 9, p. 1734. https://doi.org/10.3390/su9101734

    Article  CAS  Google Scholar 

  4. Ibekwe, A.M., Gonzalez Rubia, A., and Suarez, D.L., Impact of treated wastewater for irrigation on soil microbial communities, Sci. Total Environ., 2018, vol. 622, p. 1603. https://doi.org/10.1016/j.scitotenv.2017.10.039

    Article  CAS  PubMed  Google Scholar 

  5. Chen, L, Feng, Q., Li, C., Wei, Y., Zhao, Y., Feng, Y., Zheng, H., Li, F., and Li, H., Impacts of aquaculture wastewater irrigation on soil microbial functional diversity and community structure in arid regions, Sci. Rep., 2017, vol. 7, p. 11193. https://doi.org/10.1038/s41598-017-11678-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Al-Gheethi, A.A., Efaq, A.N., Bala, J.D., Norli, I., Abdel-Monem, M.O., and Ab Kadir, M.O., Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes, Appl. Water Sci., 2018, vol. 8, p. 74. https://doi.org/10.1007/s13201-018-0698-6

    Article  Google Scholar 

  7. Malakar, A., Snow, D.D., and Ray, C., Irrigation water quality—A contemporary perspective, Water, 2019, vol. 11, p. 1482. https://doi.org/10.3390/w11071482

    Article  CAS  Google Scholar 

  8. Hajihashemi, S., Mbarki, S., Skalicky, M., Noedoost, F., Raeisi, M., and Brestic, M., Effect of wastewater irrigation on photosynthesis, growth, and anatomical features of two wheat cultivars (Triticum aestivum L.), Water, 2020, vol. 12, p. 607. https://doi.org/10.3390/w12020607

    Article  Google Scholar 

  9. Urbano, V.R., Mendonça, T.G., Bastos, R.G., and Souza, C.F., Effects of treated wastewater irrigation on soil properties and lettuce yield, Agric. Water Manage., 2017, vol. 181, p. 108. https://doi.org/10.1016/j.agwat.2016.12.001

    Article  Google Scholar 

  10. Kruize, H., van der Vliet, N., Staatsen, B., Bell, R., Chiabai, A., Muiños, G., Higgins, S., Quiroga, S., Martinez-Juarez, P., Yngwe, M.A., Tsichlas, F., Karnaki, P., Lima, M.L., García de Jalón, S., Khan, M., et al., Urban green space: creating a triple win for environmental sustainability, health, and health equity through behavior change, Int. J. Environ. Res. Publ. Health, 2019, vol. 16, p. 4403. https://doi.org/10.3390/ijerph16224403

    Article  Google Scholar 

  11. Carmo-Silva, A.E., Powers, S.J., Keys, A.J., Arrabaca, M.C., and Parry, M.A.J., Photorespiration in C4 grasses remains slow under drought conditions, Plant Cell Environ., 2008, vol. 31, p. 925. https://doi.org/10.1111/j.1365-3040.2008.01805.x

    Article  CAS  PubMed  Google Scholar 

  12. Furbank, R.T. and Taylor, W.C., Regulation of photosynthesis in C3 and C4 plants: a molecular approach, Plant Cell, 1995, vol. 7, p. 797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Standard Methods for the Examination of Water and Wastewater, Washington, DC: Am. Publ. Health Assoc., 1998, 20th ed.

  14. Arnon, D.I., Copper enzymes in isolation chloroplast phenoloxidase in Beta vulgaris, Plant Physiol., 1949, vol. 24, p. 15. https://doi.org/10.1104/pp.24.1.1

    Article  Google Scholar 

  15. Campbell, P.G.C., Cadmium—a priority pollutant, Environ. Chem., 2006, vol. 3, p. 387. https://doi.org/10.1071/EN06075

    Article  CAS  Google Scholar 

  16. Neina, D., The role of soil pH in plant nutrition and soil remediation, Appl. Environ. Soil Sci., 2019, vol. 2019, p. 5794869. https://doi.org/10.1155/2019/5794869

    Article  CAS  Google Scholar 

  17. Macnicol, R.D. and Beckett, P.H.T., Critical tissue concentrations of potentially toxic elements, Plant Soil, 1985, vol. 85, p. 107. https://doi.org/10.1007/BF02197805

    Article  CAS  Google Scholar 

  18. Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J., Wang, Q., Zhang, X., and Wu, X., Factors influencing leaf chlorophyll content in natural forests at the biome scale, Front. Ecol. Evol., 2018, vol. 6, p. 64. https://doi.org/10.3389/fevo.2018.00064

    Article  CAS  Google Scholar 

  19. Trankner, M., Tavakol, E., and Jákli, B., Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection, Physiol Plant., 2018, vol. 163, p. 414. https://doi.org/10.1111/ppl.12747

    Article  CAS  Google Scholar 

  20. Maleva, M.G., Nekrasova, G.F., Borisova, G.G., Chukina, N.V., and Ushakova, O.S., Effect of heavy metal on photosynthetic apparatus and antioxidant status of elodea, Russ. J. Plant Physiol., 2012, vol. 59, p. 190. https://doi.org/10.1134/S1021443712020069

    Article  CAS  Google Scholar 

  21. Bhat, J.A., Shivaraj, S.M., Singh, P., Navadagi, D.B., Tripathi, D.K., Dash, P.K., Solanke, A.U., Sonah, H., and Deshmukh, R., Role of silicon in mitigation of heavy metal stresses in crop plants, Plants, 2019, vol. 8, p. 71. https://doi.org/10.3390/plants8030071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rucińska-Sobkowiak, R., Water relations in plants subjected to heavy metal stresses, Acta Physiol. Plant., 2016, vol. 38, p. 257. https://doi.org/10.1007/s11738-016-2277-5

    Article  CAS  Google Scholar 

  23. Ouzounidou, G., Asfi, M., Sotirakis, N., Papadopoulou, P., and Gaitis, F., Olive mill wastewater triggered changes in physiology and nutritional quality of tomato (Lycopersicon esculentum Mill.) depending on growth substrate, J. Hazard. Mater., 2008, vol. 158, p. 523. https://doi.org/10.1016/j.jhazmat.2008.01.100

    Article  CAS  PubMed  Google Scholar 

  24. Khan, A.H.A., Nawaz, I., Qu, Z., Butt, T.A., Yousaf, S., and Iqbal, M., Reduced growth response of ornamental plant Nicotiana alata L. upon selected heavy metals uptake, with co-application of ethylene diamine tetra acetic acid, Chemosphere, 2020, vol. 241, p. 125006. https://doi.org/10.1016/j.chemosphere.2019.125006

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez, E., Santos, C., Azevedo, R., Moutinho-Pereira, J., Correia, C., and Dias, M.C., Chromium (VI) induces toxicity at different photosynthetic levels in pea, Plant Physiol. Biochem., 2012, vol. 53, p. 94. https://doi.org/10.1016/j.plaphy.2012.01.013

    Article  CAS  PubMed  Google Scholar 

  26. Dias, M.C., Moutinho-Pereira, J., Correia, C., Monteiro, C., Araujo, M., Brueggemann, W., and Santos, C., Physiological mechanisms to cope with Cr (VI) toxicity in lettuce: Can lettuce be used in Cr phytoremediation? Environ. Sci. Pollut. Res., 2016, vol. 23, p. 15627. https://doi.org/10.1007/s11356-016-6735-9

    Article  CAS  Google Scholar 

  27. Papanatsiou, M., Amtmann, A., and Blatt, M.R., Stomatal spacing safeguards stomatal dynamics by facilitating guard cell ion transport independent of the epidermal solute reservoir, Plant Physiol., 2016, vol. 172, p. 254. https://doi.org/10.1104/pp.16.00850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, L.B., Holtkamp, F., Wairich, A., and Frei, M., Potassium ion channel gene OsAKT1 affects iron translocation in rice plants exposed to iron toxicity, Front. Plant Sci., 2019, vol. 10, p. 579. https://doi.org/10.3389/fpls.2019.00579

    Article  PubMed  PubMed Central  Google Scholar 

  29. Boto, K.G. and Wellington, J.T., Phosphorus and nitrogen nutritional status of a northern Australian mangrove forest, Mar. Ecol.: Prog. Ser., 1983, vol. 11, p. 63.

    Article  Google Scholar 

  30. Derome, J. and Lindroos, A.J., Effect of heavy metal contamination on macronutrient availability and acidification parameters in forest soil in the vicinity of the Harjavalta Cu–Ni smelter, SW, Finland, Environ. Pollut., 1998, vol. 99, p. 225. https://doi.org/10.1016/S0269-7491(97)00185-1

    Article  CAS  PubMed  Google Scholar 

  31. Knapp, A.K. and Medina, E., Success of C4 photosynthesis in the field: lessons from communities dominated by C4 plants, in C4 Plant Biology, Sage, R.F. and Monson, R.K., Eds., London: Academic, 1999, p. 251. https://doi.org/10.1016/b978-012614440-6/50009-4

  32. Wang, C., Guo, L., Li, Y., and Wang, Z., Systematic comparison of C3 and C4 plants based on metabolic network analysis, BMC Syst. Biol., 2012, vol. 6, p. S9. https://doi.org/10.1186/1752-0509-6-s2-s9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Selahvarzi.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Abbreviations: Pn—photosynthesis rate; Tr—transpiration rate; gs—stomatal conductance; Ci—intercellular CO2 concentration; WUEi—intrinsic water use efficiency.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selahvarzi, Y., Kamali, M., Oraee, A. et al. Comparison between Photosynthesis and Growth Indicators of C4 and C3 Grasses as Influenced by Wastewater. Russ J Plant Physiol 69, 73 (2022). https://doi.org/10.1134/S1021443722040136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722040136

Keywords: