Skip to main content
Log in

Physiological Exploration of Intra-Specific Variability in Salinity Tolerance of Amaranth

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Soil salinity is one of the most significant environmental problems that negatively affect crop growth and productivity due to the high concentration of sodium (Na+) ions in agricultural lands. Amaranth (Amaranthus caudatus L.) has been proposed as a robust alternative to traditional cereal crops in areas likely to be affected by increased salinity in the future. This work investigates the physiological and biochemical responses of three genotypes of amaranth (‘Red’, ‘Green’ and ‘Pony’ genotypes) to different gradual levels of salinity (100 and 200 mM). It was shown that a treatment with 100 mM NaCl improved significantly leaf and root dry biomass with maintenance of water contentparticularly ‘Green’ present the best dry biomass. The net CO2 assimilation rate (PN), stomatal conductivity (gs), transpiration rate (E) and water use efficiency (WUE) decreased significantly with the intensity of saline stress. By the same, intercellular concentration of CO2 decreased in ‘Red’ and ‘Pony’ genotypes while it increased in ‘Green’ genotype. Therefore, salt tolerance in amaranth is strongly linked to ion homeostasis with an ability to accumulate Na+ in the stems to protect the leaves and to keep a high K+/Na+ ratio in the leaves. A significant increase in antioxidant enzyme activity; catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (GPOX) in leaves and roots and an accumulation of proline were noticed. Amaranth may then be considered as a promising crop in arid and semi-arid regions affected by salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Amin, I., Norazaidah, Y., and Hainida, K.E., Antioxidant activity and phenolic content of raw and blanched Amaranthus species, Food Chem., 2006, vol. 94, p. 47.

    Article  CAS  Google Scholar 

  2. Martinez-Lopez, A., Millan-Linares, M.C., Rodriguez-Martin, N.M., Millan, F., and Montserrat-de la Paz, S., Nutraceutical value of kiwicha (Amaranthus caudatus L.), J. Funct. Foods, 2020, vol. 65, art. ID 103735. https://doi.org/10.1016/j.jff.2019.103735

    Article  CAS  Google Scholar 

  3. Chakrabarty, T., Sarker, U., Hasan, M., and Rahman, M.M., Variability in mineral compositions, yield and yield contributing traits of stem amaranth (Amaranthus lividus), Genetika, 2018, vol. 50, p. 995.

    Article  Google Scholar 

  4. Sarker, U., Islam, M.T., Rabbani, M.G., and Oba, S., Variability in total antioxidant capacity, antioxidant leaf pigments and foliage yield of vegetable amaranth, J. Integr. Agric., 2018, vol. 17, p. 1145. https://doi.org/10.1016/S2095-3119(17)61778-7

    Article  CAS  Google Scholar 

  5. Sarker, U., Islam, M.T., Rabbani, M.G., and Oba, S., Phenotypic divergence in vegetable amaranth for total antioxidant capacity, antioxidant profile, dietary fiber, nutritional and agronomic traits, Acta Agric. Scand., Sect. B, 2018, vol. 68, p. 67.

    CAS  Google Scholar 

  6. Vilcacundo, R., Barrio, D., Piñuel, L., Boeri, P., Tombari, A., Pinto, A., Welbaum, J., Hernández-Ledesma, B., and Carrillo, W., Inhibition of lipid peroxidation of kiwicha (Amaranthus caudatus) hydrolyzed protein using zebrafish larvae and embryos, Plants, 2018, vol. 7, p. 69. https://doi.org/10.3390/plants7030069

    Article  CAS  PubMed Central  Google Scholar 

  7. Isayenkov, S.V. and Maathuis, F.J.M., Plant salinity stress: many unanswered questions remain, Front. Plant Sci., 2019, vol. 10, p. 80.

    Article  Google Scholar 

  8. Munns, R. and Tester, M., Mechanisms of salinity tolerance, Annu. Rev. Plant Biol., 2008, vol. 59, p. 651. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  9. Bhargava, A. and Srivastava, S., Response of Amaranthus sp. to salinity stress: a review, in Emerging Research in Alternative Crops, Cham: Springer-Verlag, 2020, p. 245.

    Google Scholar 

  10. Hoagland, D.R. and Arnon, D.I., The water-culture method for growing plants without soil, Circ. Calif. Agric. Exp. Stn., 1950, vol. 347.

    Google Scholar 

  11. Yin, C.Y., Berninger, F., and Li, C.Y., Photosynthetic responses of Populus przewalski subjected to drought stress, Photosynthetica, 2006, vol. 44, p. 62.

    Article  Google Scholar 

  12. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, p. 350.

  13. Wolf, B., A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status, Commun. Soil Sci. Plant Anal., 1982, vol. 13, p. 1035.

    Article  CAS  Google Scholar 

  14. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, p. 121.

    Article  CAS  Google Scholar 

  15. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, p. 867.

    CAS  Google Scholar 

  16. Zaharieva, T., Yamashita, K., and Matsumoto, H., Iron deficiency induced changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber roots, Plant Cell Physiol., 1999, vol. 40, p. 273.

    Article  CAS  Google Scholar 

  17. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, p. 205.

    Article  CAS  Google Scholar 

  18. Estrada, Y., Fernández-Ojeda, A., Morales, B., Egea-Fernández, J.M., Flores, F.B., Bolarín, M.C., and Egea, I., Unraveling the strategies used by the underexploited amaranth species to confront salt stress: similarities and differences with Quinoa species, Front. Plant Sci., 2021, vol. 12, art. ID 604481.

    Article  Google Scholar 

  19. Castrillón-Arbeláez, P.A. and Délano-Frier, J.P., Secondary metabolism in Amaranthus spp.—A genomic approach to understand its diversity and responsiveness to stress in marginally studied crops with high agronomic potential, in Abiotic and Biotic Stress in Plants: Recent Advances and Future Perspectives, Shanker, A., Ed., London: InTechOpen, 2016, p. 185.

  20. Shabala, S. and Munns, R., Salinity stress: physiological constraints and adaptive mechanisms, Plant Stress Physiol., 2012, vol. 1, p. 59.

    Article  Google Scholar 

  21. Wang, N., Qiao, W., Liu, X., Shi, J., Xu, Q., Zhou, H., Yan, G., and Huang, Q., Relative contribution of Na+/K+ homeostasis, photochemical efficiency and antioxidant defense system to differential salt tolerance in cotton (Gossypium hirsutum L.) cultivars, Plant Physiol. Biochem., 2017, vol. 119, p. 121.

    Article  Google Scholar 

  22. Wu, H.-J., Zhang, Z., Wang, J.-Y., Oh, D.-H., Dassanayake, M., Liu, B., Huang, Q., Sun, H.-X., Xia, R., and Wu, Y., Insights into salt tolerance from the genome of Thellungiella salsuginea, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, p. 12219.

    Article  CAS  Google Scholar 

  23. Xue, S., Yao, X., Luo, W., Jha, D., Tester, M., Horie, T., and Schroeder, J.I., AtHKT1;1 mediates nernstian sodium channel transport properties in Arabidopsis root stelar cells, PLoS One, 2011, vol. 6, p. e24725.

    Article  CAS  Google Scholar 

  24. Berthomieu, P., Conéjéro, G., Nublat, A., Brackenbury, W.J., Lambert, C., Savio, C., Uozumi, N., Oiki, S., Yamada, K., and Cellier, F.X., Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance, EMBO J., 2003, vol. 22, p. 2004.

    Article  CAS  Google Scholar 

  25. Plett, D., Safwat, G., Gilliham, M., Skrumsager Møller, I., Roy, S., Shirley, N., Jacobs, A., Johnson, A., and Tester, M., Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1, PLoS One, 2010, vol. 5, p. e12571.

    Article  Google Scholar 

  26. Cuin, T.A., Tian, Y., Betts, S.A., Chalmandrier, R., and Shabala, S.X., Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions, Funct. Plant Biol., 2009, vol. 36, p. 1110.

    Article  CAS  Google Scholar 

  27. Nan, D., Liu, F., and Ma, R., Effect of proximity on recombination innovation in R&D collaboration: an empirical analysis, Technol. Anal. Strategic Manage., 2018, vol. 30, p. 921.

    Article  Google Scholar 

  28. Pan, T., Liu, M., Kreslavski, V.D., Zharmukhamedov, S.K., Nie, C., and Yu, M., Kuznetsov, V.V., Allakhverdiev, S.I., and Shabala, S., Non-stomatal limitation of photosynthesis by soil salinity, Crit. Rev. Environ. Sci. Technol., 2020, vol. 5, p. 791.

    Google Scholar 

  29. Bai, J., Qin, Y., Liu, J., Wang, Y., Sa, R., Zhang, N., and Jia, R., Proteomic response of oat leaves to long-term salinity stress, Environ. Sci. Pollut. Res., 2017, vol. 24, p. 3387.

    Article  CAS  Google Scholar 

  30. Omamt, E.N., Hammes, P.S., and Robbertse, P.J., Differences in salinity tolerance for growth and water-use efficiency in some amaranth (Amaranthus spp.) genotypes, N. Z. J. Crop Hortic. Sci., 2006, vol. 34, p. 11.

    Article  Google Scholar 

  31. Wang, Y. and Nii, N., Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress, J. Hortic. Sci. Biotechnol., 2000, vol. 75, p. 623.

    Article  CAS  Google Scholar 

  32. Mutlu, S., Atici, O., and Nalbantoglu, B., Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance, Biol. Plant., 2009, vol. 53, p. 334.

    Article  CAS  Google Scholar 

  33. Apel, K. and Hirt, H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 2004, vol. 55, p. 373.

    Article  CAS  Google Scholar 

  34. Khoshgoftarmanesh, A.H., Khodarahmi, S., and Haghighi, M.X., Effect of silicon nutrition on lipid peroxidation and antioxidant response of cucumber plants exposed to salinity stress, Arch. Agron. Soil Sci., 2004, vol. 60, p. 639.

    Article  Google Scholar 

  35. Asrar, H., Hussain, T., Qasim, M., Nielsen, B.L., Gul, B., and Khan M.A., Salt induced modulations in antioxidative defense system of Desmostachya bipinnata, Plant Physiol. Biochem., 2020, vol. 147, p. 113.

    Article  CAS  Google Scholar 

  36. Farhangi-Abriz, S. and Torabian, S., Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress, Ecotoxicol. Environ. Saf., 2017, vol. 137, p. 64.

    Article  CAS  Google Scholar 

  37. Pandey, S., Ganeshpurkar, A., Bansal, D., and Dubey, N., Hematopoietic effect of Amaranthus cruentus extract on phenylhydrazine-induced toxicity in rats, J. Diet, Suppl., 2016, vol. 13, p. 607.

    Article  CAS  Google Scholar 

  38. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., and Ahmad, A., Role of proline under changing environments: a review, Plant Signaling Behav., 2012, vol. 7, p. 1456.

    Article  CAS  Google Scholar 

  39. De la Torre-González, A., Montesinos-Pereira, D., Blasco, B., and Ruiz, J.M., Influence of the proline metabolism and glycine betaine on tolerance to salt stress in tomato (Solanum lycopersicum L.) commercial genotypes, J. Plant Physiol., 2018, vol. 231, p. 329.

    Article  Google Scholar 

  40. Hannachi, S. and van Labeke, M.-C., Salt stress affects germination, seedling growth and physiological responses differentially in eggplant cultivars (Solanum melongena L.), Sci. Hortic. (Amsterdam), 2018, vol. 228, p. 56.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tebini.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Abbreviations: APX—ascorbate peroxidase; Cars—carotenoids; CAT—catalase; Chl a—chlorophyll a; Chl b—chlorophyll b; Ci—internal CO2 concentration; E—transpiration rate; GPOX—guaiacol peroxidase; gs—stomatal conductance; Ls—stomatal limitations; PN—net photosynthesis rate; WUE—instantaneous water use efficiency.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tebini, M., Luu, D.T., Mguis, K. et al. Physiological Exploration of Intra-Specific Variability in Salinity Tolerance of Amaranth. Russ J Plant Physiol 69, 59 (2022). https://doi.org/10.1134/S1021443722030153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722030153

Keywords:

Navigation