Skip to main content
Log in

Impact of Hypersalinity on Two Salt-Stressed Varieties of Rice (Oryza sativa): A the Comparative Study

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

A comprative study evaluation of response of salt stress on different of oxidative and changes in the profile of fatty acids in two varities of rice (Oryza sativa) has been portrayed in our work. ‘Jaya’ variety of rice exhibited greater amount of membrane stability (MSI), hydrogen peroxide (H2O2) and hydroxyl radicale (\({\text{OH}}\bullet \)) and protein carbonyl production compared to those of ‘Korgut’ rice variety under salinity stress. GC-MS analysis confirms that the composition of fatty acids in leaves of both varieties was established primarily by 16:0 and 18:0 (primary saturated fatty acids) and 18:1ω-9, 18:2ω-6 and 18:3ω-3 (primary unsaturated fatty acids). The ‘Jaya’ variety showed higher levels of saturated fatty acids in membrane lipids than the ‘Korgut’ variety. In contrast, the ‘Korgut’ variety displayed an enhanced level of unsaturated fatty acid (linolenic and oleic acids), which is one of the characteristics responsible for making ‘Korgut’ more tolerant than the ‘Jaya’ variety. At the same time, ‘Korgut’ showed a much higher level of total fatty acid content than that of the ‘Jaya’ variety. In ‘Jaya’, the alpha-Linolenic acid (18:3ω3) has been observed only in control, and was absent in treated ones, inferring that salinity alters the nutritional value of the rice seedling. However, 18:3ω3 was detected in the ‘Korgut’ variety at all concentrations of NaCl, indicating the probability of its role in maintaining membrane fluidity and a defense mechanism against salinity stress. These pieces of evidence indicate that these fatty acids are potential molecular markers, useful for genetic programs as well as for future basic studies on salt tolerant behavior of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Hoang, T.M.L., Tran, T.N., Nguyen, T.K.T., Williams, B., Wurm, P., Bellairs, S., and Mundree, S., Improvement of salinity stress tolerance in rice: challenges and opportunities, Agronomy, 2016, vol. 6, p. 54. https://doi.org/10.3390/agronomy6040054

    Article  CAS  Google Scholar 

  2. Bibliography on salt tolerance: fibers, grains and special crops, Salinity Laboratory, United States Department of Agriculture. http://www.ars.usda.gov/services/docs.Htm?Docid=8908.

  3. Razzaq, A., Ali, A., Safdar, L.B., Zafar, M.M., Rui, Y., Shakeel, A., Shaukat, A., Ashraf, M., Gong, W., and Yuan, Y., Salt stress induces physiochemical alterations in rice grain composition and quality, J. Food Sci., 2020, vol. 85, p. 14. https://doi.org/10.1111/1750-3841.14983

    Article  CAS  PubMed  Google Scholar 

  4. Srivastava, S. and Sharma, P.K., Morphophysiological and biochemical tolerance mechanisms in two varieties of Oryza sativa to salinity, Russ. J. Plant Physiol., (in press).

  5. Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M., Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, J. Bot., 2012, vol. 2012, p. 1. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  6. Surówka, E., Latowski, D., Libik-Konieczny, M., and Miszalski, Z., ROS signaling, and antioxidant defence network in halophytes, in Halophytes and Climate Change: Adaptive Mechanisms and Potential Uses, Hasanuzzaman, M., Shabala, S., and Fujita, M., Eds., Boston: CAB Int., 2019, p. 179.

    Google Scholar 

  7. Pisoschi, A.M. and Pop, A., The role of antioxidants in the chemistry of oxidative stress: a review, Eur. J. Med. Chem., 2015, vol. 97, p. 55. https://doi.org/10.1016/j.ejmech.2015.04.040

    Article  CAS  PubMed  Google Scholar 

  8. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., and Mittler, R., Reactive oxygen species homeostasis and signalling during drought and salinity stresses, Plant Cell Environ., 2010, vol.33, p. 453. https://doi.org/10.1111/j.1365-3040.2009.02041.x

    Article  CAS  PubMed  Google Scholar 

  9. Petrov, V., Hille, J., Mueller-Roeber, B., and Gechev, T.S., ROS-mediated abiotic stress-induced programmed cell death in plants, Front. Plant Sci. 2015, vol. 6, p. 69. https://doi.org/10.3389/fpls.2015.00069

    Article  PubMed  PubMed Central  Google Scholar 

  10. Slater, T.F., Cheeseman, K.H., Davies, M.J., Proudfoot, K., and Xin, W., Free radical mechanisms in relation to tissue injury, Proc. Nutr. Soc., 1987, vol. 46, p. 1. https://doi.org/10.1079/PNS19870003

    Article  CAS  PubMed  Google Scholar 

  11. Fam, S.S. and Morrow, J.D., The isoprostanes: unique products of arachidonic acid oxidation-a review, Curr. Med. Chem., 2003, vol. 10, p. 1723. https://doi.org/10.2174/0929867033457115

    Article  CAS  PubMed  Google Scholar 

  12. Yu, D., Boughton, B.A., Hill, C.B., Feussner, I., Roessner, U., and Rupasinghe, T.W.T., Insights into oxidized lipid modification in barley roots as an adaptation mechanism to salinity stress, Front. Plant Sci., 2020, vol. 11, p. 1. https://doi.org/10.3389/fpls.2020.00252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang, Y., Zhang, W., Chen, Q., and Ding, R., Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.), Environ. Exp. Bot., 2005, vol. 53, p. 29. https://doi.org/10.1016/j.envexpbot.2004.02.010

    Article  CAS  Google Scholar 

  14. Kuiper, P.J.C., Functioning of plant cell membranes under saline conditions: membrane lipid composition and ATPases salinity tolerance in plants, in Salinity Tolerance Plants, New York: Wiley, 1984, p. 77.

    Google Scholar 

  15. Gill, S.S. and Tuteja, N., reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, p. 909. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  16. Lutts, S., Kinet, J.M., and Bouharmont, J., NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance, Ann. Bot., 1996, vol. 78, p. 389. https://doi.org/10.1006/anbo.1996.0134

    Article  CAS  Google Scholar 

  17. Sagisaka, S., The occurrence of peroxide in a perennial plant, Populus gelrica, Plant Physiol., 1976, vol. 57, p. 308. https://doi.org/10.1104/pp.57.2.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tiedemann, A.V., Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea, Physiol. Mol. Plant Pathol., 1997, vol. 50, p. 151. https://doi.org/10.1006/pmpp.1996.0076

    Article  CAS  Google Scholar 

  19. Aruoma, O.I., Halliwell, B., Hoey, B.M., and Butler, J., The antioxidant action of taurine, hypotaurine and their metabolic precursors, Biochem. J., 1988, vol. 256, p. 251. https://doi.org/10.1042/bj2560251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reznick, A.Z. and Packer, L., Oxidative damage to proteins: spectrophotometric method for carbonyl assay, Methods Enzymol., 1994, vol. 233, p. 357. https://doi.org/10.1016/S0076-6879(94)33041-7

    Article  CAS  PubMed  Google Scholar 

  21. Turnham, E. and Northcote, D.H., The use of acetyl-CoA carboxylase activity and changes in wall composition as measures of embryogenesis in tissue cultures of oil palm (Elaeis guineensis), Biochem. J., 1982, vol. 208, p. 323. https://doi.org/10.1042/bj2080323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He, M. and Ding, N.Z., Plant unsaturated fatty acids: multiple roles in stress response, Front. Plant Sci., 2020, vol. 11, art. ID 562785. https://doi.org/10.3389/fpls.2020.562785

    Article  PubMed  PubMed Central  Google Scholar 

  23. Azachi, M., Sadka, A., Fisher, M., Goldshlag, P., Gokhman, I., and Zamir, A., Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina, Plant Physiol., 2002, vol. 129, p. 1320. https://doi.org/10.1104/pp.001909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hajlaoui, H., Denden, M., and El Ayeb, N.E., Changes in fatty acids composition, hydrogen peroxide generation and lipid peroxidation of salt-stressed corn (Zea mays L.) roots, Acta Physiol. Plant., 2009, vol. 31, p. 787. https://doi.org/10.1007/s11738-009-0293-4

    Article  CAS  Google Scholar 

  25. Chalbi, N., Hessini, K., Gandour, M., Mohamed, S.N., Smaoui, A., Abdelly, C., and Ben Youssef, N.B., Are changes in membrane lipids and fatty acid composition related to salt-stress resistance in wild and cultivated barley? J. Plant Nutr. Soil Sci., 2013, vol. 176, p. 138. https://doi.org/10.1002/jpln.201100413

    Article  CAS  Google Scholar 

  26. Liu, S., Wang, W., Li, M., Wan, S., Sui, N., antioxidants and unsaturated fatty acids are involved in salt tolerance in peanut, Acta Physiol. Plant., 2017, vol. 39, p. 207. https://doi.org/10.1007/s11738-017-2501-y

    Article  CAS  Google Scholar 

  27. Sui, N., Wang, Y., Liu, S., Yang, Z., Wang, F., and Wan, S., Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut, Front. Plant Sci., 2018, vol. 9, p. 7. https://doi.org/10.3389/fpls.2018.00007

    Article  PubMed  PubMed Central  Google Scholar 

  28. da Cruz, R.P., Golombieski, J.I., Bazana, M.T., Cabreira, C., Silveira, T.F., and da Silva, L.P., Alterations in fatty acid composition due to cold exposure at the vegetative stage in rice. Braz. J. Plant Physiol., 2010, vol. 22, p. 199. https://doi.org/10.1590/S1677-04202010000300007

    Article  Google Scholar 

  29. Zhang, M., Barg, R., Yin, M., Gueta-Dahan, Y., Leikin-Frenkel, A., Salts, Y., Shabtai, S., and Ben-Hayyim, G., Modulated fatty acid desaturation via overexpression of two distinct ɷ-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants, Plant J., 2005, vol. 44, p. 361. https://doi.org/10.1111/j.1365-313X.2005.02536.x

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. Aninda Mazumdar and Dr. Shyam Prasad Mokkapati, NIO (National Institute of Ocenography, GOA) for GC-MS facility. The first author would like to thank Mr. SR Sumant Yanamandra for his help in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Sharma.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., da Silva, R. & Sharma, P.K. Impact of Hypersalinity on Two Salt-Stressed Varieties of Rice (Oryza sativa): A the Comparative Study. Russ J Plant Physiol 69, 60 (2022). https://doi.org/10.1134/S102144372203013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S102144372203013X

Keywords:

Navigation