Skip to main content
Log in

The Role of Organic Acids and Thiol Compounds in Detoxification and Tolerance of Zn Stress in Two Populations of Harmel

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The present study aimed to investigate the effects of Zn exposure (0, 1, 5, 15, 30 ppm Zn) on harmel seedlings. Two populations (metallicolous and non-metallicolous) were compared in terms of the role of soluble sugars, proline, anthocyanin, reducing sugars, cysteine, total free amino acids, ascorbate, dehydroascorbate, glutathione, hydrogen peroxide (H2O2), lipid peroxidation, thiol compounds, organic acids, biomass and Zn concentration. The Zn concentration in plants from metallicolous and non-metallicolous populations was similar, not significantly different. The results of hydroponic culture showed that the increase of Zn concentrations in the nutrient solution increased soluble sugars, proline, anthocyanin, reducing sugars, cysteine, total free amino acids, ascorbate, dehydroascorbate, glutathione, thiol compounds, and organic acids. In other words, the contents of H2O2 and lipid peroxidation in metallicolous populations were lower than non-metallicolous populations under Zn stresses. However, with increasing Zn stresses, the concentration of non-protein thiols increased compared to the concentration of glutathione, which indicates the accumulation of phytochelatin. Also, plants exposed to Zn showed a significant increase in malate, citrate, and oxalate but fumarate, and acetate were significantly reduced. These results indicated that the metallicolous population of harmel had a greater capacity than the non-metallicolous population to adapt to oxidative stress caused by Zn stress, and antioxidative defense in the metallicolous population of harmel might play a key role in detoxification and tolerance of Zn. In conclusion, the above results show that harmel may have a detoxification mechanism to counteract high concentrations of Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Kaur, H. and Garg, N., Zinc toxicity in plants: a review, Planta, 2021, vol. 253, p. 129.

    Article  CAS  PubMed  Google Scholar 

  2. Shaw, A.J., Heavy Metal Tolerance in Plants: Evolutionary Aspects, Boca Raton, FL: CRC Press, 1989, p. 299.

    Google Scholar 

  3. Baker, A.J.M., Metal tolerance, New Phytol., 1987, vol. 106, p. 93.

    Article  CAS  Google Scholar 

  4. Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., and Sopory, S.K., Transgenic tobacco over expressing glyoxalase pathway enzymes grow and viable seeds in zinc-spiked soils, Plant Physiol., 2006, vol. 140, p. 613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, C., Zhang, S.H., Wang, P.F., Hou, J., Zhang, W.J., Li, W., and Lin, Z.P., The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings, Chemosphere, 2009, vol. 75, p. 1468.

    Article  CAS  PubMed  Google Scholar 

  6. Cherif, J., Najoua Derbel, N., Nakkach, M., Bergmann, H., Jemal, F., and Lakhdar, Z., Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress, J. Photochem. Photobiol., B, 2010, vol. 101, p. 332.

    Article  CAS  Google Scholar 

  7. Mahdavian, K., Effect of citric acid on antioxidant activity of red bean (Phaseolus calcaratus L.) under Cr+6 stress, S. Afr. J. Bot., 2021, vol. 139, p. 83.

    Article  CAS  Google Scholar 

  8. Mahdavian, K., Ghaderian, S.M., and Schat, H., Pb accumulation, Pb tolerance, antioxidants, thiols, and organic acids in metallicolous and non-metallicolous Peganum harmala L. under Pb exposure, Environ. Exp. Bot., 2016, vol. 126, p. 21.

    Article  CAS  Google Scholar 

  9. Mahdavian, K., Ghaderian, S.M., and Torkzadeh Mahani, M., Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead-zinc mining area, Iran, J. Soil Sediment, 2017, vol. 17, p. 1310.

    Article  CAS  Google Scholar 

  10. Amiri, A., Baninasab, B., Ghobadi, C., and Khoshgoftarmanesh, A.H., Zinc soil application enhances photosynthetic capacity and antioxidant enzyme activities in almond seedlings affected by salinity stress, Photosynthetica, 2016, vol. 54, p. 267.

    Article  CAS  Google Scholar 

  11. Aghajanzadeh, T.A., Prajapati, D.H., and Burow, M., Differential partitioning of thiols and glucosinolates between shoot and root in Chinese cabbage upon excess zinc exposure, J. Plant Physiol., 2020, vol. 244, art. ID 153088.

    Article  CAS  PubMed  Google Scholar 

  12. Souza, S.C.R., Souza, L.A., Schiavinato, M.A., de Oliveira Silva, F.M., and de Andrade, S.A.L., Zinc toxicity in seedlings of three trees from the Fabaceae associated with arbuscular mycorrhizal fungi, Ecotoxicol. Environ. Saf., 2020, vol. 195, art. ID 110450.

    Article  CAS  PubMed  Google Scholar 

  13. Seregin, I.V. and Kozhevnikova, A.D., Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation, Photosynth. Res., 2020, vol. 150, p. 51.

    Article  PubMed  Google Scholar 

  14. Gupta, D., Vandenhove, H., and Inouhe, M., Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants, in Heavy Metal Stress in Plants, Berlin: Springer-Verlag, 2013, p. 73.

    Book  Google Scholar 

  15. Hall, J.L., Cellular mechanisms for heavy metal detoxification and tolerance, J. Exp. Bot., 2002, vol. 53, p. 1.

    Article  CAS  PubMed  Google Scholar 

  16. Shamsa, F., Monsef, H.R., Ghamoosh, R., and Verdian, M.R., Spectrophotometric determination of total alkaloids in Peganum harmala L. using bromocresol green, Res. J. Phytochem., 2007, vol. 1, p. 79.

    Article  Google Scholar 

  17. Dubois, M., Gilles, K., Hamilton, J., and Rebers, P., Colorimetric method for determination of sugars and related substances, Anal. Chem., 1956, vol. 28, p. 350.

    Article  CAS  Google Scholar 

  18. Jeffries, T.W., Yang, V.W., and Davis, M.W., Comparative study of xylanase kinetics using dinitrosalicylic, arsenomolybdate, and ion chromatographic assays, Appl. Biochem. Biotechnol., 1988, vol. 70, p. 257.

    Google Scholar 

  19. Wagner, G.J., Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts, Plant Physiol., 1979, vol. 64, p. 88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Pinto, M.C., Francis, D., and De Gara, L., The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells, Protoplasma, 1999, vol. 209, p. 90.

    Article  CAS  PubMed  Google Scholar 

  21. Ellman, G.L., Tissue sulfydryl groups, Arch. Biochem. Biophys., 1959, vol. 82, p. 70.

    Article  CAS  PubMed  Google Scholar 

  22. Hwang, M. and Ederer, G.M., Rapid hippurate hydrolysis method for presumptive identification of group B streptococci, J. Clin. Microbiol., 1975, vol. 1, p. 114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gaitonde, M.K., A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids, Biochem. J., 1967, vol. 104, p. 627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bates, L.S., Waldren, R.P., and Tear, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, p. 205.

    Article  CAS  Google Scholar 

  25. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, p. 189.

    Article  CAS  PubMed  Google Scholar 

  26. Meirs, S., Philosoph-Hadas, S., and Aharoni, N., Ethylene increased accumulation of fluorescent lipid peroxidation products detected during senescence of parsley by a newly developed method, J. Am. Soc. Hortic. Sci., 1992, vol. 117, p. 128.

    Article  Google Scholar 

  27. Sergiev, I., Alexieva, V., and Karanov, E., Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants, C. R. Acad. Bulg. Sci., 1997, vol. 51, p. 121.

    Google Scholar 

  28. Tolra, R.P., Poschenrieder, C., and Barcelo, J., Zinc hyperaccumulation in Thlaspi caerulescens. II. Influence on organic acids, J. Plant Nutr., 1996, vol. 19, p. 1541.

    Article  CAS  Google Scholar 

  29. Boulton, R., The co-pigmentation of anthocyanins and its role in the color of red wine: a critical review, Am. J. Enol. Vitic., 2001, vol. 52, p. 67.

    CAS  Google Scholar 

  30. Alfadul, S.M.S. and Al-Fredan, M.A.A., Effects of Cd, Cu, Pb, and Zn combinations on Phragmites australis metabolism, metal accumulation and distribution, Ara-b. J. Sci. Eng., 2013, vol. 38, p. 11.

    Article  CAS  Google Scholar 

  31. Tripathi, B.N., Mehta, S.K., Amar, A., and Gaur, J.P., Oxidative stress in Scenedemus sp. during short and long-term exposure to Cu and Zn, Chemosphere, 2006, vol. 62, p. 538.

    Article  CAS  PubMed  Google Scholar 

  32. Lea, P.J. and Leegood, R.C., Biochemistry and Molecular Biology of Plants, Chichester: Wiley, 1999, p. 183.

    Google Scholar 

  33. Panda, S.K. and Choudhury, S., Changes in nitrate reductase activity and oxidative stress response in the moss polytrichum commune subjected to chromium, copper and zinc phytotoxicity, Plant Physiol., 2005, vol. 17, p. 191.

    CAS  Google Scholar 

  34. Smeets, K., Cuypers, A., Lambrechts, A., Semane, B., Hoet, P., Laere, A.V., and Vangronsveld, J., Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application, Plant Physiol. Biochem., 2005, vol. 43, p. 437.

    Article  CAS  PubMed  Google Scholar 

  35. Cuypers, A., Vangronsveld, J., and Clijsters, H., The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris, Plant Physiol. Biochem., 2001, vol. 39, p. 657.

    Article  CAS  Google Scholar 

  36. Jain, R., Srivastava, S., Solomon, S., Shrivastava, A.K., and Chandra, A., Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.), Acta Physiol. Plant., 2010, vol. 32, p. 979.

    Article  CAS  Google Scholar 

  37. Cheeseman, J.M., Hydrogen peroxide and plant stress: a challenging relationship, Plant Sci., 2007, vol. 1, p. 4.

    Google Scholar 

  38. Clemens, S., Metal ligands in micronutrient acquisition and homeostasis, Plant Cell Environ., 2019, vol. 42, p. 2902.

    Article  CAS  PubMed  Google Scholar 

  39. Osmolovskaya, N., Dung, V.V., and Kuchaeva, L., The role of organic acids in heavy metal tolerance in plants, Biol. Commun., 2018, vol. 63, p. 9.

    Article  Google Scholar 

  40. Yang, X.E., Baligar, V.C., Foster, J.C., and Marten, D.C., Accumulation and transport of nickel in relation to organic acid in ryegrass and maize grown with different nickel levels, Plant Soil, 1997, vol. 196, p. 271.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Author is thankful to Payame Noor University Research Council for approval and providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mahdavian.

Ethics declarations

Conflict of interests. The author declares that he has no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by the author.

Additional information

Abbreviations: ASC—ascorbate; DHA—dehydroascorbate; GSH—glutathione; PC—phytochelatin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavian, K. The Role of Organic Acids and Thiol Compounds in Detoxification and Tolerance of Zn Stress in Two Populations of Harmel. Russ J Plant Physiol 69, 58 (2022). https://doi.org/10.1134/S1021443722030098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722030098

Keywords:

Navigation