Skip to main content
Log in

Complex Phylogeny and Expression Patterns of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER Family Genes in Tomato

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) proteins play important roles in transporting substrates, such as nitrate, peptides, amino acids, dicarboxylates, malate, glucosinolates, indole acetic acid, abscisic acid, and jasmonic acid. However, there is limited information on the NPF genes in tomato (Solanum lycopersicum L.), in contrast to Arabidopsis. Our study aimed to reveal general information about tomato NPFs and to analyze the transcriptional responses of some members using plant nitrogen status. We identified 85 SlNPF genes, and a phylogenetic analysis organized them into nine major clades. Thirty motifs were found based on NPF amino acid sequence alignments. Chromosomal locations and gene duplication events of SlNPF family genes were also analyzed. An uneven distribution of SlNPF genes was discovered among tomato chromosomes. Twenty-five SlNPF genes resulted from whole-genome triplication (WGT)/segmental duplication in Solanaceae. Our results showed that ancient whole-genome triplication and tandem duplication mainly contributed to the expansion of the SlNPF genes. In the NPF family, 19 orthologous genes were identified between tomato and Arabidopsis, suggesting that at least 19 NPF genes were present in a common ancestor before Arabidopsis and tomato differentiated. In addition, we analyzed the expression patterns of the SlNPF family genes in various tomato tissues. We monitored 49 root-specific SlNPF genes that showed varied expression patterns under different N status. Among them, SINPF9, -34, ‑58 and -60 were significantly induced by both low and high levels of nitrate. Our findings provide a foundation for future research on this gene family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. O'Brien, J.A., Vega, A., Bouguyon, E., Krouk, G., Gojon, A., Coruzzi, G., and Gutiérrez, R.A., Nitrate transport, sensing, and responses in plants, Mol. Plant, 2016, vol. 9, p. 837. https://doi.org/10.1016/j.molp.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  2. Gojon, A., Krouk, G., Perrine-Walker, F., and Laugier, E., Nitrate transceptor(s) in plants, J. Exp. Bot., 2011, vol. 62, p. 2299. https://doi.org/10.1093/jxb/erq419

    Article  CAS  PubMed  Google Scholar 

  3. Krapp, A., David, L.C., Chardin, C., Girin, T., Marmagne, A., Leprince, A.S., Chaillou, S., Ferrario-Méry, S., Meyer, S., and Daniel-Vedele, F., Nitrate transport and signaling in Arabidopsis, J. Exp. Bot., 2014, vol. 65, p. 789. https://doi.org/10.1093/jxb/eru001

    Article  CAS  PubMed  Google Scholar 

  4. Wang, X., Cai, X., Xu, C., and Wang, Q., Identification and characterization of the NPF, NRT2, and NRT3 in spinach, Plant Physiol. Biochem., 2021, vol. 158, p. 297. https://doi.org/10.1016/j.plaphy.2020.11.017

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, H., Li, S., Shi, M., Wang, S., Shi, L., Xu, F., and Ding, G., Genome-wide systematic characterization of the npf family genes and their transcriptional responses to multiple nutrient stresses in allotetraploid rapeseed, Int. J. Mol. Sci., 2020, vol. 21, p. 5947. https://doi.org/10.3390/ijms21175947

    Article  CAS  PubMed Central  Google Scholar 

  6. Wang, H., Wan, Y., Buchner, P., King, R., Ma, H., and Hawkesford, M.J., Phylogeny and gene expression of the complete NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY in Triticum aestivum, J. Exp. Bot., 2020, vol. 71, p. 4531. https://doi.org/10.1093/jxb/eraa210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Drechsler, N., Courty, P.E., Brule, D., and Kunze, R., Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice, Mycorrhiza, 2018, vol. 28, p. 93. https://doi.org/10.1007/s00572-017-0802-z

    Article  CAS  PubMed  Google Scholar 

  8. Chao, H., He, J., Cai, Q., Zhao, W., Fu, H., Hua, Y., Li, M., and Huang, J., The expression characteristics of NPF genes and their response to vernalization and nitrogen deficiency in rapeseed, Int. J. Mol. Sci., 2021, vol. 22, p. 4944. https://doi.org/10.3390/ijms22094944

    Article  PubMed  PubMed Central  Google Scholar 

  9. Prabhala, B.K., Rahman, M., Nour-Eldin, H.H., Jorgensen, F.S., and Mirza, O., PTR2/POT/NPF transporters: what makes them tick? in Advances in Protein Chemistry and Structural Biology, Amsterdam: Elsevier, 2021, vol. 123, ch. 10, p. 219. https://doi.org/10.1016/bs.apcsb.2020.10.002.

  10. Tsay, Y.F., Schroeder, J.I., Feldmann, K.A., and Crawford, N.M., The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter, Cell, 1993, vol. 72, p. 705. https://doi.org/10.1016/0092-8674(93)90399-b

    Article  CAS  PubMed  Google Scholar 

  11. Karim, S., Holmstrom, K.O., Mandal, A., Dahl, P., Hohmann, S., Brader, G., Palva, E.T., and Pirhonen, M., AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis, Planta, 2007, vol. 225, p. 1431. https://doi.org/10.1007/s00425-006-0451-5

    Article  CAS  PubMed  Google Scholar 

  12. Nour-Eldin, H.H., Andersen, T.G., Burow, M., Madsen, S.R., Jorgensen, M.E., Olsen, C.E., Dreyer, I., Hedrich, R., Geiger, D., and Halkier, B.A., NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds, Nature, 2012, vol. 488, p. 531. https://doi.org/10.1038/nature11285

    Article  CAS  PubMed  Google Scholar 

  13. Mounier, E., Pervent, M., Ljung, K., Gojon, A., and Nacry, P., Auxin-mediated nitrate signaling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability, Plant Cell Environ., 2014, vol. 37, p. 162. https://doi.org/10.1111/pce.12143

    Article  CAS  PubMed  Google Scholar 

  14. Tal, I., Zhang, Y., Jorgensen, M.E., Pisanty, O., Barbosa, I.C., Zourelidou, M., Regnault, T., Crocoll C., Olsen, C.E., Weinstain, R., Schwechheimer, C., Halkier B.A., Nour-Eldin, H.H., Estelle, M., and Shani, E., The Arabidopsis NPF3 protein is a GA transporter, Nat. Commun., 2016, vol. 7, p. 11486. https://doi.org/10.1038/ncomms11486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kanno, Y., Hanada, A., Chiba, Y., Ichikawa, T., Nakazawa, M., Matsui, M., Koshiba, T., Kamiya, Y., and Seo, M., Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, p. 9653. https://doi.org/10.1073/pnas.1203567109

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu, K.H. and Tsay, Y.F., Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation, EMBO J., 2003, vol. 22, p. 1005. https://doi.org/10.1093/emboj/cdg118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hachiya, T. and Sakakibara, H., Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants, J. Exp. Bot., 2017, vol. 68, p. 2501. https://doi.org/10.1093/jxb/erw449

    Article  CAS  PubMed  Google Scholar 

  18. Dechorgnat, J., Nguyen, C.T., Armengaud, P., Jossier, M., Diatloff, E., Filleur, S., and Daniel-Vedele, F., From the soil to the seeds: the long journey of nitrate in plants, J. Exp. Bot., 2011, vol. 62, p. 1349. https://doi.org/10.1093/jxb/erq409

    Article  CAS  PubMed  Google Scholar 

  19. Wulff, N., Ernst, H.A., Jorgensen, M.E., Lambertz, S., Maierhofer, T., Belew, Z.M., Crocoll, C., Motawia, M.S., Geiger, D., Jørgensen, F.S., Mirza, O., and Nour-Eldin, H.H., An optimized screen reduces the number of GA transporters and provides insights into nitrate transporter 1/peptide transporter family substrate determinants, Front. Plant Sci., 2019, vol. 10, p. 1106. https://doi.org/10.3389/fpls.2019.01106

    Article  PubMed  PubMed Central  Google Scholar 

  20. Weichert, A., Brinkmann, C., Komarova, N.Y., Dietrich, D., Thor, K., Meier, S., Grotemeyer, M.S., and Rentsch, D., AtPTR4 and AtPTR6 are differentially expressed, tonoplast-localized members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family, Planta, 2012, vol. 235, p. 311. https://doi.org/10.1007/s00425-011-1508-7

    Article  CAS  PubMed  Google Scholar 

  21. Tong, J., Walk, T.C., Han, P., Chen, L., Shen, X., Li, Y., Gu, C., Xie, L., Hu, X., Liao, X., and Qin, L., Genome-wide identification and analysis of high-affinity nitrate transporter 2 (NRT2) family genes in rapeseed (Brassica napus L.) and their responses to various stresses, BMC Plant Biol., 2020, vol. 20, p. 464. https://doi.org/10.1186/s12870-020-02648-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiba, T., Feria-Bourrellier, A.B., Lafouge, F., Lezhneva, L., Boutet-Mercey, S., Orsel, M., Bréhaut, V., Miller, A., Daniel-Vedele, F., Sakakibara, H., and Krapp, A., The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants, Plant Cell, 2012, vol. 24, p. 245. https://doi.org/10.1105/tpc.111.092221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, R., Jia, T., Cui, B., and Song, J., The expression patterns and putative function of nitrate transporter 2.5 in plants, Plant Signaling Behav., 2020, vol. 15, art. ID 1815980. https://doi.org/10.1080/15592324.2020.1815980

    Article  CAS  Google Scholar 

  24. Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A., Salazar, G.A., Tate, J., and Bateman, A., The Pfam protein families database: towards a more sustainable future, Nucleic Acids Res., 2016, vol. 44, p. D279. https://doi.org/10.1093/nar/gkv1344

    Article  CAS  PubMed  Google Scholar 

  25. Eddy, S.R., Profile hidden Markov models, Bioinformatics, 1998, vol. 14, p. 755. https://doi.org/10.1093/bioinformatics/14.9.755

    Article  CAS  PubMed  Google Scholar 

  26. Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, p. 772. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Keane, T.M., Creevey, C.J., Pentony, M.M., Naughton, T.J., and McLnerney, J.O., Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified, BMC Evol. Biol., 2006, vol. 6, p. 29. https://doi.org/10.1186/1471-2148-6-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bailey, T.L., Johnson, J., Grant, C.E., and Noble, W.S., The MEME suite, Nucleic Acids Res., 2015, vol. 43, p. W39. https://doi.org/10.1093/nar/gkv416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, Y., Tang, H., Debarry, J.D., Tan, X., Li, J., Wang, X., Lee, T., Jin, H., Marler, B., Guo, H., Kissinger, J.C., and Paterson, A.H., MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity, Nucleic Acids Res., 2012, vol. 40, p. e49. https://doi.org/10.1093/nar/gkr1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suyama, M., Torrents, D., and Bork, P., PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments, Nucleic Acids Res., 2006, vol. 34, p. W609. https://doi.org/10.1093/nar/gkl315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, Z., PAML 4: phylogenetic analysis by maximum likelihood, Mol. Biol. Evol., 2007, vol. 24, p. 1586. https://doi.org/10.1093/molbev/msm088

    Article  CAS  PubMed  Google Scholar 

  32. Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., and Hia, R., TBtools: an integrative toolkit developed for interactive analyses of big biological data, Mol. Plant., 2020, vol. 13, p. 1194. https://doi.org/10.1016/j.molp.2020.06.009

    Article  CAS  PubMed  Google Scholar 

  33. Morales-Cruz, A., Amrine, K.C., Blanco-Ulate, B., Lawrence, D.P., Travadon, R., Rolshausen, P.E., Baumgartner, K., and Cantu, D., Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens, BMC Genomics, 2015, vol. 16, p. 469. https://doi.org/10.1186/s12864-015-1624-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao, T., Holmer, R., de Bruijn, S., Angenent, G.C., van den Burg, H.A., and Schranz, M.E., Phylogenomic synteny network analysis of MADS-box transcription factor genes reveals lineage-specific transpositions, ancient tandem duplications, and deep positional conservation, Plant Cell, 2017, vol. 29, p. 1278. https://doi.org/10.1105/tpc.17.00312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo, C., Guo, R., Xu, X., Gao, M., Li, X., Song, J., Zheng, Y., and Wang, X., Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family, J. Exp. Bot., 2014, vol. 65, p. 1513. https://doi.org/10.1093/jxb/eru007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., et al., The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla, Nature, 2007, vol. 449, p. 463. https://doi.org/10.1038/nature06148

    Article  CAS  PubMed  Google Scholar 

  37. Qiao, X., Yin, H., Li, L., Wang, R., Wu, J., Wu, J., and Zhang, S., Different modes of gene duplication show divergent evolutionary patterns and contribute differently to the expansion of gene families involved in important fruit traits in pear (Pyrus bretschneideri), Front. Plant Sci., 2018, vol. 9, p. 161. https://doi.org/10.3389/fpls.2018.00161

    Article  PubMed  PubMed Central  Google Scholar 

  38. Renny-Byfield, S., Gallagher, J.P., Grover, C.E., Sz-adkowski, E., Page, J.T, Udall, J.A., Wang. X., Paterson, A.H., and Wendel, J.F., Ancient gene duplicates in Gossypium (cotton) exhibit near-complete expression divergence, Genome Biol. Evol., 2014, vol. 6, p. 559. https://doi.org/10.1093/gbe/evu037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, Z., Coulter, J.A., Li, Y., Zhang, X., Meng, J., Zhang, J., and Liu, Y., Genome-wide identification and analysis of the Q-type C2H2 gene family in potato (Solanum tuberosum L.), Int. J. Biol. Macromol., 2020, vol. 153, p. 327. https://doi.org/10.1016/j.ijbiomac.2020.03.022

    Article  CAS  PubMed  Google Scholar 

  40. Taylor, S., Pieri, K., Nanni, P., Tica, J., Barratt, J., and Didangelos, A., Phosphatidylethanolamine binding protein-4 (PEBP4) is increased in IgA nephropathy and is associated with IgA-positive B-cells in affected kidneys, J. Autoimmun., 2019, vol. 105, art. ID 102309. https://doi.org/10.1016/j.jaut.2019.102309

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank members of the ZY laboratory for discussions and comments on the manuscript. We thank Lesley Benyon, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

This work was financially supported by the Scientific and Technological Project of Jinhua City (project nos. 2021-2-027 and 2021-2-019).

Author information

Authors and Affiliations

Authors

Contributions

X. Liu and Y. Gao contributed equally to this work.

Corresponding author

Correspondence to Y. Zhu.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Abbreviations: NPF—NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER; WGT—whole-genome triplication; NRTs—nitrate transporters; PTR—peptide transporter; AP2/ERF—APETALA2/ethylene-responsive factor; WGD—whole-genome duplication.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Gao, Y., Li, K. et al. Complex Phylogeny and Expression Patterns of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER Family Genes in Tomato. Russ J Plant Physiol 69, 47 (2022). https://doi.org/10.1134/S1021443722030086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722030086

Keywords:

Navigation