Skip to main content
Log in

The Mechanisms of Pod Zone Nitrogen Application on Peanut Pod Yield

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Peanut (Arachis hypogaea L.) is a geocarpic plant, which absorbs nutrients not only through roots but also through pods. However, the effect of nitrogen fertilizer application in pod area on pod gene expression and peanut yield is unknown. In this study, we determined the pod yield, dry matter accumulation, nitrogen accumulation in different organs under different nitrogen treatment in root zone and pod zone. The results showed that pod area application of nitrogen led to significantly higher pod yield to compare with the control. The application of 60 kg/hm2 nitrogen at the pod area led to the highest pod yield, full fruit rate and plant nitrogen content. 15N directly absorbed by pods was mainly accumulated in the shell at early stage of pods development, and then transferred to seeds at later period. However, the ratio of 15N absorbed directly by pods from soil was low, only about 10%. To understand the underlying molecular mechanisms, immature pods of different developmental stages were collected for gene expression analysis. The expression levels of several genes encoding ABC type transporter family, nitrate reductase, nitrite reductase and glutamine synthetase increased in different stages of pod development upon pod area nitrogen application. These results indicated that the efficiency of N assimilation and glutamate metabolic cycle in pods was increased under pod nitrogen application. The expression levels of several genes in gibberellin and brassinolide biosynthesis pathways were also up-regulated, suggesting that these two hormones were involved in the promoting effect of pod nitrogen application on pod growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Wienhold, B.J., Trooien, T.P., and Reichman, G.A., Yield and nitrogen use efficiency of irrigated corn in the northern Great Plains, Agron. J., 2019, vol. 87, p. 842. https://doi.org/10.2134/agronj1995.00021962008700050010x

    Article  Google Scholar 

  2. Ball, S.T., Wynne, J.C., Elkan, G.H., and Schneeweis, T.J., Effect of inoculation and applied nitrogen on yield, growth and nitrogen fixation of two peanut cultivars, Field Crop Res., 1983, vol. 6, p. 85. https://doi.org/10.1016/0378-4290(83)90050-3

    Article  Google Scholar 

  3. Siri-Prieto, G., Reeves, D.W., and Raper, R.L., Tillage systems for a cotton–peanut rotation with winter-annual grazing: impacts on soil carbon, nitrogen and physical properties, Soil Tillage Res., 2007, vol. 96, p. 260. https://doi.org/10.1016/j.still.2007.06.010

    Article  Google Scholar 

  4. Zhang, X., Zhang, X.Y., Zhang, Y.T., Mao, J.W., Li, G.P., and Zhao, L.J., Effects of nitrogen application rate on nodulation, nitrogen absorption and utilization of peanut, J. Peanut Sci., 2012, vol. 41, p. 12. https://doi.org/10.3969/j.issn.1002-4093.2012.04.003

    Article  CAS  Google Scholar 

  5. Witte, C.P., Urea metabolism in plants, Plant Sci., 2011, vol. 180, p. 431. https://doi.org/10.1016/j.plantsci.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  6. Hao, D.L., Yang, S.Y., Huang, Y.N., and Su, Y.H., Identification of structural elements involved in fine-tuning of the transport activity of the rice ammonium transporter OsAMT1;3, Plant Physiol. Biochem., 2016, vol. 108, p. 99. https://doi.org/10.1016/j.plaphy.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  7. Kotur, Z., Mackenzie, N., Ramesh, S., Tyerman, S.D., Kaiser, B.N., and Glass, A.D.M., Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1, New Phytol., 2012, vol. 194, p. 724. https://doi.org/10.1111/j.1469-8137.2012.04094.x

    Article  CAS  PubMed  Google Scholar 

  8. Loqué, D., Yuan, L.X., Kojima, S., Gojon, A., Wirth, J., Gazzarrini, S., Ishiyaina, K., Takahashi, H., and Wirén, N.V., Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen deficient Arabidopsis roots, Plant J., 2006, vol.48, p. 522. https://doi.org/10.1111/j.1365-313X.2006.02887.x

    Article  CAS  PubMed  Google Scholar 

  9. Liu, K.H. and Tsay, Y.F., Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation, EMBO J., 2003, vol. 22, p. 1005. https://doi.org/10.1093/emboj/cdg118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krapp, A., David, L.C., Chardin, C., Girin, T., Marmagne, A., Leprince, A.S., Chaillou, S., Ferrario-Méry, S., Meyer, C., and Daniel-Vedele, F., Nitrate transport and signaling in Arabidopsis, J. Exp. Bot., 2014, vol. 65, p. 789-798. https://doi.org/10.1093/jxb/eru001

    Article  CAS  PubMed  Google Scholar 

  11. Seabra, A.R., Silva, L.S., and Carvalho, H.G., Novel aspects of glutamine synthetase (GS) regulation revealed by a detailed expression analysis of the entire GS gene family of Medicago truncatula under different physiological conditions, BMC Plant Biol., 2013, vol. 13, p. 137. https://doi.org/10.1186/1471-2229-13-137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nigro, D., Blanco, A., Anderson, O.D., and Gadaleta, A., Characterization of Ferredoxin-Dependent Glutamine-Oxoglutarate Amidotransferase (Fd-GOGAT) genes and their relationship with grain protein content QTL in wheat, PLoS One, 2014, vol. 9, p. 1. https://doi.org/10.1371/journal.pone.0103869

    Article  CAS  Google Scholar 

  13. Gruber, N. and Galloway, J.N., An Earth-system perspective of the global nitrogen cycle, Nature, 2008, vol. 451, p. 293. https://doi.org/10.1038/nature06592

    Article  CAS  PubMed  Google Scholar 

  14. Xia, H., Zhao, C.Z., Hou, L., Li, A.Q., Zhao, S.Z., Bi, Y.P., An, J., Zhao, Y.X., Wan, S.B., and Wang, X.J., Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness, BMC Genomics, 2013, vol. 14, p. 517. https://doi.org/10.1186/1471-2164-14-517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inanaga, S., Utunomiya, M., Horiguchi, T., and Nishihara, T., Behavior of fertilizer-N absorbed through root and fruit in peanut, Plant Soil, 1990, vol. 122, p. 85. https://doi.org/10.1007/BF02851913

    Article  CAS  Google Scholar 

  16. Yang, R., Howe, J.A., and Balkcom, K.B., Soil evaluation methods for calcium for peanut (Arachis hypogaea L.) production in the coastal plain, Peanut Sci., 2017, vol. 44, p. 1. https://doi.org/10.3146/PS16-5.1

    Article  Google Scholar 

  17. Li, Y., Meng, J.J., Yang, S., Guo, F., Zhang, J.L., Geng, Y., Cui, L., Wan, S.B., and Li, X.G., Transcriptome analysis of calcium- and hormone-related gene expressions during different stages of peanut pod development, Front. Plant Sci., 2017, vol. 8, p. 1241. https://doi.org/10.3389/fpls.2017.01241

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim, D., Langmead, B., and Salzberg, S.L., HISAT: a fast spliced aligner with low memory requirements, Nat. Methods, 2015, vol. 12, p. 357. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Langmead, B. and Salzberg, S.L., Fast gapped-read alignment with bowtie 2, Nat. Methods, 2012, vol. 9, p. 357. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, B. and Dewey, C.N., RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome, BMC Bioinf., 2011, vol. 12, p. 323. https://doi.org/10.1186/1471-2105-12-323

    Article  CAS  Google Scholar 

  21. Wang, L., Feng, Z., Wang, X., Wang, X., and Zhang, X., DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics, 2010, vol. 26, p. 136. https://doi.org/10.1093/bioinformatics/btp612

    Article  CAS  PubMed  Google Scholar 

  22. Dai, L.X., Zhang, Z.M., Zhang, G.C., Zhang, Y., Ci, D.W., Qin, F.F., and Ding, H., Effects of nitrogen application on nitrogen uptake and distribution in peanut, J. Nucl. Agric. Sci., 2020, vol. 34, p. 0370.

  23. Luo, H., Zhou, G.Y., Luo, Y.F., and Liang, X.Q., Traits analysis of high yield peanut varieties, J. Peanut Sci., 2009, vol. 38, p. 15. https://doi.org/10.3969/j.issn.1002-4093.2009.03.004

    Article  Google Scholar 

  24. Zhang, Z.M., Wan, S.B., Ning, T.Y., and Dai, L.X., Effects of nitrogen level on nitrogen metabolism and correlating enzyme activity of peanut, J. Plant Ecol., 2008, vol. 32, p. 1407. https://doi.org/10.3773/j.issn.1005-264x.2008.06.022

    Article  CAS  Google Scholar 

  25. Remans, T., Nacry, P., Pervent, M., Girin, T., Tillard, P., Lepetit, M., and Gojon, A., A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis, Plant Physiol., 2006, vol. 140, p. 909. https://doi.org/10.1104/pp.105.075721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cerezo, M., Tillard, P., Filleur, S., Muños, S., Daniel-Vedele, F., and Gojon, A., Major alterations of the regulation of root \({\text{NO}}_{3}^{ - }\) uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis, Plant Physiol., 2001, vol. 127, p. 262. https://doi.org/10.1104/pp.127.1.262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Filleur, S., Dorbe, M. F., Cerezo, M., Orsel, M., Granier, F., Gojon, A., and Daniel-Vedele, F., An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake, FEBS Lett., 2001, vol. 489, p. 220. https://doi.org/10.1016/s0014-5793(01)02096-8

    Article  CAS  PubMed  Google Scholar 

  28. Lezhneva, L., Kiba, T., Feria-Bourrelier, A.B., Lafouge, F., Boutet-Mercey, S., Zoufan, P., Sakakibara, H., Daniel-Vedele, F., and Krapp, A., The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants, Plant J., 2014, vol. 80, p. 230. https://doi.org/10.1111/tpj.12626

    Article  CAS  PubMed  Google Scholar 

  29. Kiba, T., Feria-Bourrellier, A.B., Lafouge, F., Lezhneva, L., Boutet-Mercey, S., Orsel, M., Bréhaut, V., Miller, A., Daniel-Vedele, F., Sakakibara, H., and Krapp, A., The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants, Plant Cell, 2012, vol. 24, p. 245. https://doi.org/10.1105/tpc.111.092221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krouk, G., Hormones and nitrate: a two-way connection, Plant Mol. Biol., 2016, vol. 91, p. 599. https://doi.org/10.1007/s11103-016-0463-x

    Article  CAS  PubMed  Google Scholar 

  31. Tian, Q.Y., Sun, P., and Zhang, W.H., Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana, New Phytol., 2009, vol. 184, p. 918. https://doi.org/10.1111/j.1469-8137.2009.03004.x

    Article  CAS  PubMed  Google Scholar 

  32. Ge, J.J., Zhu, L., Zhang, G.L., Han, W.J., Yin, Y.H., and Li, Y., Effects of ethephon on nitrogen metabolism and photosynthesis characters of peanut, J. Peanut Sci., 2008, vol. 37, p. 22. https://doi.org/10.3969/j.issn.1002-4093.2008.02.006

    Article  Google Scholar 

  33. Bai, L.Q., Deng, H.H., Zhang, X.C., Yu, X.C., and Li, Y.S., Gibberellin is involved in inhibition of cucumber growth and nitrogen uptake at suboptimal root-zone temperatures, PLoS One, 2016, vol. 23, p. 11, p. e0156188. https://doi.org/10.1371/journal.pone.0156188

  34. Chiba, Y., Shimizu, T., Miyakawa, S., Kanno, Y., Koshiba, T., Kamiya, Y., and Seo, M., Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones, J. Plant Res., 2015, vol. 128, p. 679. https://doi.org/10.1007/s10265-015-0710-2

    Article  CAS  PubMed  Google Scholar 

  35. David, L.C., Berquin, P., Kanno, Y., Seo, M., Daniel-Vedele, F., and Ferrario-Méry, S., N availability modulates the role of NPF3.1, a gibberellin transporter, in GA-mediated phenotypes in Arabidopsis, Planta, 2016, vol. 244, p. 1315. https://doi.org/10.1007/s00425-016-2588-1

    Article  CAS  PubMed  Google Scholar 

  36. Wu, Z. F., Chen, D. X., Zheng, Y.M., Wang, C.B., Sun, X.W., Li, X.D., Wang, X.X., Shi, C.R., Feng, H., and Yu, T.Y., Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut, Chin. J. Oil Crop Sci., 2016, vol. 38, p. 207. https://doi.org/10.7505/j.issn.1007-9084.2016.02.011

    Article  Google Scholar 

Download references

Funding

This work was financially supported by grants from the National Natural Science Foundation of China (project nos. 31801301, 31861143009); Natural Science Foundation of Shandong Province (project nos. ZR2020MC104, ZR2020MC105); Young Talents Training Program; Agricultural scientific and technological innovation project of Shandong Academy of Agricultural Sciences (project no. CXGC2018E13); Taishan Scholar Foundation of Shandong Province (project no. ts20190964).

Author information

Authors and Affiliations

Authors

Contributions

L. Hou and R. Lin contributed equally to this work.

Corresponding author

Correspondence to G. H. Li.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Abbreviations: NUE—N use efficiency; NRT—nitrate transporter family; CLC—chloride channel family; AMTS—ammonium transporters; TIPs—tonoplast intrinsic proteins; NR— nitrate reductase; NiRA—nitrite reductase; GS/GOGAT—glutamine synthetase/glutamate synthetase; FH1—‘Fenghua 1’; PES—pod expanding stage; PFS—pod filling stage; HS—harvesting stage; LN—low nitrogen; HN—high nitrogen; DEGs— differentially expressed genes; FHN—FH1 treated with nitrogen in pod zone; FHO—FH1 control; MIPs—major intrinsic proteins; DUR3—high-affinity urea transporter; GDH—glutamate dehydrogenase; KAO1—ent-kaurenoic acid oxidase; GA20ox— gibberellin 20 oxidase 2; GA3ox—gibberellin 3-beta-dioxygenase; GA2ox—gibberellin 2-beta-dioxygenase; BRI1—brassinosteroid-insensitive1; BES1/BZR1—BRI1 EMS SUPPRESSOR 1/BRASSINAZOLE RESISTANT 1; EIN3—Ethylene-insensitive3; ACS—ACC synthase; ACO—ACC oxidase.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Lin, R.X., Wang, X.J. et al. The Mechanisms of Pod Zone Nitrogen Application on Peanut Pod Yield. Russ J Plant Physiol 69, 51 (2022). https://doi.org/10.1134/S1021443722030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722030050

Keywords:

Navigation